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Audio production involves using tools such as reverberators and equalizers to transform
audio into a state ready for release. While these tools are widely available to musicians who
are not expert audio engineers, existing interfaces can be frustrating for newcomers, as their
interfaces are parameterized in terms of low-level signal manipulations that may not be intu-
itive to non-experts. We present Audealize, an interface that bridges the gap between low-level
parameters of existing audio production tools and programmatic goals (e.g. “make my guitar
sound ‘underwater”’). Users modify the audio by selecting descriptive terms in a word-map
built from a crowdsourced vocabulary of word labels for audio effects. We perform the first
user study comparing a word-map interface to traditional audio production interfaces. A study
on a population of 432 non-experts found they favored the crowdsourced word-map over tra-
ditional interfaces. Absolute performance measures show those using the word-map interface
produced results that equaled or exceeded results using traditional interfaces. This indicates
language, in concert with a meaningful word-map visualization, is an effective interaction
paradigm for audio production by non-experts. Audealize is an example of a general design
approach that can apply to other domains and can be accessed at http://audealize.appspot.com.

0 Introduction

Audio production involves using tools such as reverber-
ators, equalizers and compressors to make audio for music,
video, podcasts, etc. ready for public consumption. In re-
cent years, high quality audio production software, once
found only in professional recording studios, has become
affordable and available to a broad range of people. These
people wish to use production tools to achieve artistic ef-
fects, but are typically not professional audio engineers.

Artistic creators often want to use production tools to
evoke extra-musical impressions in an audience. For ex-
ample, the beginning of Pink Floyd’s “Wish You Were
Here” evokes the effect of a guitar being played along with
music over a tinny radio. The lead guitarist for the band,
David Gilmour, did not play his guitar through a radio,
but rather used audio production tools to manipulate his
guitar sound to match that of a car radio [1]. We call this
programmatic music production, after the classical music
tradition of programmatic music, where composers try to
evoke extra-musical thoughts in their audience (e.g. Proki-
fiev’s Peter and the Wolf evoking distinct animals through
orchestration and melody choices).

Current production tools, such as equalizers (Figure 1)
and reverberators (Figure 2), are not designed to natu-
rally support programmatic music production. Their in-
terfaces are conceptualized in a signal-parameter space,
which consists of low-level technical parameters of the sig-

nal processing techniques behind the audio tools. While
David Gilmour has experience with these interfaces for au-
dio production tools and access to expert audio engineers
to achieve their creative goals, our target population does
not.

Figure 1 shows a typical parametric equalizer. It is not
obvious to a non-engineer (e.g. an acoustic musician or
amateur) how to manipulate the knobs and dials to achieve
David Gilmour’s goal of making his guitar sound like it’s
coming out of a transistor radio. For many, the relationship
between the programmatic space and the signal-parameter
space is unknown and is a major barrier that adds signifi-
cant time and frustration to the process.

Expert recording engineers can navigate the signal-
parameter space effectively, but often do not share a com-
mon descriptive language with non-engineers. As a well
known engineer put it: “It’s a situation all engineers have
been in, where a musician is frustratedly trying to explain
to you the sound he or she is after, but lacking your ability
to describe it in terms that relate to technology...” [2]. Fur-
ther, inspiration may happen at times or places (e.g. mid-
night in a singer-songwriter’s basement) when it is not pos-
sible to access an expert engineer. These availability and
communication issues mean hiring an expert engineer may
not solve the problem.

Developers of commercial audio production tools [3] of-
ten try to simplify the interfaces with a list of named pre-
set parameter combinations (presets). Popular commercial
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Fig. 1. A parametric equalizer. The large number of knobs on
the interface can be intimidating to a newcomer. How would you
manipulate this interface to make something sound “tinny”?

Fig. 2. A parametric reverberator from Ableton Live, a digital
audio workstation. For a novice, it isn’t clear how you would use
this interface to make something sound “warm” or “underwater”.

tools (e.g. Adobe Audition, Ableton Live) often have hun-
dreds of presets in multi-layer menus, making the preset
list nearly as difficult to navigate as the original interface.
Further, lists do not show relationships between presets and
are often named using language that those who did not de-
velop the tools may not share (see Section 4).

In this work, we describe Audealize, an interface that
lets the user modify sound by selecting descriptive terms
(e.g. “underwater”, “tinny”, “chaotic”) in a 2-D word-map
(Figures 3 and 4), where spatial relationships between
words indicate relatedness of the audio effects. When a
word is selected, the sound is modified to embody the de-
scriptive term. The interface vocabulary is seeded from a
crowdsourced set of natural language descriptors collected
in two previous studies [4] [5], rather than a curated list
made by tool-builders or experts in audio (e.g. audiologists,
recording engineers, developers of audio plugin software).
This is a deliberate choice. Different communities may use
different language to describe the same things, therefore
we feel it best to learn the appropriate vocabulary for a par-
ticular population from that population. To build a version
of Audealize for a target population (e.g. hobbyists, orches-
tral musicians, visual artists, Spanish speakers), one would
collect a vocabulary from the target population. Users may
also teach new vocabulary to the tool. This lets Audealize
automatically adapt to the population of users.

By working in the programmatic space, we create a con-
sistent user experience regardless of the underlying tool.
Figures 1 and 2 show very different interfaces for two

audio production tools. In contrast, Audealize (Figures 3
and 4) has analogous interfaces for both reverberation and
equalization. While our work focuses on audio production,
this approach to interface design and construction could
be applied more broadly, since the controls are in the pro-
grammatic space instead of the signal-parameter space. For
example, one could imagine a Photoshop (or Instagram)
tool with a crowdsourced interface that makes pictures
“warmer” or “old-timey”.

This publication is the first to directly compare the effi-
cacy of a 2-D word-map to the standard interface, which we
call a signal-parameter interface for the remainder of this
article, for audio production tools (equalization and rever-
beration) via a user study. Audio effects plugins often have
preset lists and these are the only readily available word vo-
cabularies with precisely-defined settings on the relevant
audio effects tools. We therefore compare crowdsourced
vocabularies for equalization and reverberation vocabular-
ies to the vocabularies created by expert tool builders and
embodied in preset lists. This is the first work to create and
evaluate a unified programmatic interface that spans mul-
tiple effects tools. We also describe how to make the tool
a life-long learner that continues to update vocabulary in
response to user interaction.

In the remainder of this paper we first place our work
in context of existing work. We then show how to auto-
matically build a programmatic word-map interface for au-
dio production from crowdsourced data. We establish why
one should use a crowdsourced vocabulary, rather than an
expert-curated vocabulary. Finally, we give the results of
user studies that compare the new interface to traditional
interfaces on two different tasks. The first is to modify
the sound with a programmatic goal in mind (e.g. make
it sound “underwater”). The second is to modify the sound
with a non-programmatic goal in mind (e.g. modify this
recording to match an existing recording).

1 Related Work

1.1 Map-based Audio Interfaces
Several groups have explored using 2-D maps to control

audio effects, mixing, sound synthesis or search through
sample libraries. Cartwright [6] created a map-based inter-
face for mixing together multiple audio tracks. This map
had no labels, which users found problematic for naviga-
tion. The work in [7] put audio samples (short recordings,
like a single snare drum hit) on a 2D map, where similar
samples were placed closed to each other. Like Cartwright,
the samples were placed on the map without any labels.

Hoffman [8] explored synthesizing sounds in a parame-
ter space of perceptually relevant features. Labels provided
by the authors were used. This can be problematic when
the vocabulary does not align with the vocabulary of the
user (see Section 4).

Sabin et al. [9] used four author-chosen labels (“bright”,
“warm”, “tinny”, “dark”) placed on a 2-D map to control
an equalizer. Mecklenburg [10] created a similar interface
for equalization, using tens of terms. However, terms were
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chosen and defined by the authors and mixed low level
and programmatic concepts (e.g. “warm hi-cut”, “less siz-
zly”). Amateur musicians considered some of their terms
too technical, indicating a disconnect between those who
determine the vocabulary and those who used the tool. Our
system avoids this issue by crowdsourcing terms from the
population that will use the tools.

The most closely related work is our own preliminary
work [11], which described a word-map interface for a re-
verberator. The work presented here is considerably more
advanced. The word mapping to spatial location better re-
flects relationships between words, our system is language
agnostic (e.g. works with both English and Spanish), we
add a learning component, our interface works with multi-
ple audio production tools, and we have evaluated the ef-
ficacy of a word-map interface for both reverberation and
equalization with a large-scale user study. None of these
things were done in our preliminary work.

1.2 Content Creation/Control with High-level
Descriptors

There is some prior work in building audio controllers
parameterized with natural language terms. Schmidt [12]
made an early example of a computer-assisted audio
production tool using natural language as its interaction
paradigm. It had a small dictionary of expert-selected
words related to a library of audio samples (e.g. recordings
of flutes and tubas, etc) and production tools (e.g. MIDI
sequencer). It used a language parser to let the user control
system by saying things like “Play the bass”. This work fo-
cused on audio samples and sequencing rather than audio
effects, did not include a learning component and did not
use a visual word-map.

Mycroft and Paterson [13] described the effect that cur-
rent signal-parameter equalizer interfaces have on a user’s
creativity, approach, and final output. Their work described
some directions for equalizer interface design. Our work, in
contrast, presents and evaluates a novel interface for con-
trolling multiple audio effects. Mo et al. [14] found that
emotional cues can be conveyed via reverberation. Some
of their emotional categories, such as romantic and myste-
rious, overlap with the vocabulary found in our data col-
lection [4]. Their work is a vocabulary study, like our prior
work [4], whereas our current work uses a vocabulary to
build and test an interface.

Huang [15] made a control knob for synthesis of new
sounds parameterized by a natural language word (e.g.
“scary”), learned from interaction with a user. Their sys-
tem was for the synthesis of sounds, rather than the appli-
cation of audio effects. The labels are also provided by a
single user, whereas our labels are provided and verified
by hundreds of people.

Stables et al [16] presented tools that can be used directly
in a digital audio workstation. Data was collected from
people using the tool. Settings of the audio tools are related
to descriptors provided by the user. Users could achieve the
sound they sought by providing a natural language a de-
scription. Our work leverages far more data (hundreds of

Fig. 3. Audealize, a crowdsourced word-map interface for con-
trolling an equalizer. Above the map are the waveform visualiza-
tion, seek controls, play/stop, record, import, and export buttons.
The map displays learned concepts for equalization. Users can ex-
plore the map (shown here with both English and Spanish words),
or use the search box.

Fig. 4. Audealize, a crowdsourced word-map interface for con-
trolling a reverberator. The map displays learned concepts for re-
verberation. Users can explore the map, or use the search box.

words, hundreds of users) and presents descriptors to one
another using a 2-D map, rather than as a list of presets.

2 Crowdsourcing Audio Concepts

Since our approach depends on crowdsourced collection
of mappings between words and effects control settings.
We now provide a brief overview of the SocialReverb [4]
and SocialEQ [5] user interactions for data collection. For
further detail, please refer to the prior publications.

2.1 SocialEQ
SocialEQ is a web based project for learning a vocab-

ulary of actionable audio equalization descriptors. Since
deployment, SocialEQ has learned 792 distinct words in
2327 sessions. Of these, 394 words are in Audealize based
on inclusion criteria described in Section 3.5.

In SocialEQ, mappings between words and equaliza-
tion settings are taught to the system by users. A user
of SocialEQ will first provide a freely-chosen word they
wish to teach to the system (e.g. “bright”). They are then
asked to listen to multiple equalization effects as applied
to some reference audio and rate effect in terms of how
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Fig. 5. SocialEQ: Participants are asked to rate equalization ex-
amples in terms of how well each matches their goal audio
concept.

well it matches their chosen word (e.g. from “not at all
bright” to “very bright”. These ratings are used to inter-
polate an actionable equalization definition for the chosen
word, personalized to the users taste. When multiple users
teach SocialEQ the same word, we can take the average
of their equalization settings to find a crowdsourced defini-
tion of the word. The public can contribute to SocialEQ at
www.socialeq.org, and the interface is shown in Figure 5.

2.2 SocialReverb
SocialReverb is a project to crowdsource a vocabulary

of audio descriptors that can be mapped onto concrete ac-
tions using a parametric reverberator. We deployed Social-
Reverb on Mechanical Turk where 513 unique users de-
scribed 256 instances of reverberation using 2861 unique
words, from which the 369 words that showed broadest
agreement among participants [4] were selected for use in
the current work.

In SocialReverb, mappings between words and reverber-
ation settings are taught via a labeling task. A contributor
to SocialReverb is simply presented a reverberation effect
and asked to describe it in their own words. They are then
presented a list of words other people used to describe the
same reverberation effect and asked to check off the ones
they agree also describe the effect. This elicitation process
results in a crowdsourced labeling of the effect space, giv-
ing us many pairings of words and effects. For each effect,
a list of words is now available to describe it. To build an
actionable reverberation definition for a given word (e.g.
“church”), we take all effects that were labeled with the
word and take the mean of each reverberation measure (see
Section 3.1) to find the most generalizable effect. The pub-
lic can contribute to SocialReverb at www.socialreverb.org,
and the interaction is shown in Figure 6.

3 Audealize

We now describe Audealize, an interface for reverber-
ation and equalization based on natural language adjec-
tives a non-expert would use to describe the audio effects
(see Figures 3 and 4). The user modifies a sound record-
ing by clicking on descriptive terms (e.g. “warm”, “tinny”,

Fig. 6. SocialReverb: Participants are asked to listen to a dry
recording, then a recording with an audio effect applied, and then
describe it in their own words.

Figure 5. The digital stereo reverberation unit.

The reverberator uses six comb filters in parallel to sim-
ulate the complex modal response of a room by adding
echoes together. Each comb filter is characterized by a
delay factor dk and a gain factor gk (k=1..6). The delay
values are distributed linearly over a ratio of 1:1.5 with a
range between 10 and 100 msec, so that the delay of the
first comb filter d1, defined as the longest one, determines
the other delays. The gain factor of the first comb filter g1

has the smallest gain and has a range of values between 0
and 1. Although a comb filter gives a non-flat frequency re-
sponse, a sufficient number of comb filters in parallel with
equal values of reverberation time helps to reduce the spec-
tral coloration.

An all-pass filter is added in series to increase the echo
density produced by the comb filters without introducing
spectral coloration, and doubled into two channels to sim-
ulate a more “natural sounding” reverberation in stereo.
The all-pass filter is characterized by a delay factor da of
6 msec and a gain factor ga fixed to 1√

2
. A small differ-

ence m is introduced between the delays to insure a dif-
ference between the channels, therefore the delays become
d7 = da + m

2 for the left channel and d8 = da − m
2 for

the right channel. The range of values for m = d7 − d8 is
then defined between 0 and 12 msec. Note that to prevent
exactly overlapping echoes, the delay values for the comb
and the all-pass filters are set to the closest inferior prime
number of samples.

To simulate air and walls absorption, a first-order low-
pass filter of gain gc defined from its cut-off frequency fc
is added at each channel [9]. fc ranges between 0 and half
of the frequency sampling fs. Finally, a gain parameter
G, whose range of values is between 0 and 1, controls the
wet/dry effect. In summary, a total of only five independent
parameters are needed to control the reverberator: d1, g1,
m, fc and G. The other parameters can be deduced from
them according to the relations above.

3.2 The Reverberation Measures

We now define five measures commonly used to character-
ize reverberation and describe formulae to estimate values
for these measures in terms of the parameters for our re-
verberator. For details on how we derive these formulae,
we refer the reader to [10].

• Reverberation Time (T60) is defined as the time in sec re-

quired for the reflections of a direct sound to decay by 60
dB below the level of the direct sound [5]. Based on the re-
verberation time of the comb filter and the other gains, we
estimated the reverberation time of the whole reverberation
unit as follows in Eq. 1.

T60 = max
k=1..6

(
dk log

(
10−3

ga (1− gc) G

)
/ log gk

)
(1)

• Echo Density (Dt) is defined as the number of echoes per
second at a time t. In practice, we computed the average
echoes per second between time 0 and time t. We estimated
the echo density of the whole reverberation unit at time t =
100 msec, as a combination of echo densities of the digital
filters, as follows in Eq. 2.

D =
t

da

6∑

k=1

1

dk
(2)

• Clarity (Ct) describes the ratio in dB of the energies in
the impulse response p before and after a given time t. It
provides indication of how “clear” the sound is [11]. The
definition of Ct in discrete time is given by Eq. 3.

Ct = 10 log10

(
t∑

n=0

p2[n]/
∞∑

n=t

p2[n]

)
(3)

We estimated the clarity of the whole reverberation unit at
t = 0, the arrival time of the direct sound, as shown in Eq.
4, assuming that the total energy of the reverberator is a
linear combination of the energies of its filters.

C = −10 log10

(
G2 1− gc

1 + gc

6∑

k=1

gk
2

1− gk
2

)
(4)

• Central Time (TC) is the “center of gravity” of the energy
in the impulse response p, [11], defined in discrete time by
Eq. 5.

TC =

∞∑

n=0

np2[n]/
∞∑

n=0

p2[n] (5)

Based on the same assumption as for clarity, we estimated
the central time of the whole reverberation unit as the com-
bination of central times of the filters, as follows in Eq. 6.

TC =

6∑

k=1

dkgk
2

(1− gk2)2
/

6∑

k=1

gk
2

1− gk2
+ da (6)

• Spectral Centroid (SC) is the “center of gravity” of the en-
ergy in the magnitude spectrum P of the impulse response
p, defined in discrete time by Eq. 7, where fs is the sam-
pling frequency.

SC =

fs/2∑

n=0

nP2[n]/

fs/2∑

n=0

P2[n] (7)

We estimated the spectral centroid of the whole reverber-
ation unit from the characteristics of its low-pass filter, as

3

Fig. 7. The digital stereo reverberation unit. Traditional reverber-
ation units have controls that are based directly on gain and de-
lay values within this circuit, rather than on perceptually relevant
features.

“chaotic”) in a 2-D word-map. When a word is selected,
the appropriate audio manipulations are applied to modify
the sound to embody the descriptive term.

Audealize integrates our prior work in active and trans-
fer learning of audio concepts ([5], [17], [18]) with crowd-
sourced vocabularies relating the signal-parameter space to
the programmatic space ([4], [5], [19]) to create a cohe-
sive word-map interface to control multiple audio produc-
tion tools. This bridges the gap between the programmatic
space and the signal-parameter space.

3.1 Underlying audio effects
While a word-map could be a front end to any paramet-

ric reverberator or equalizer, we use the same reverbera-
tor as used in SocialReverb [4], and a similar equalizer to
the one used in SocialEQ[5]. We chose these reverbera-
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tor and equalizer implementations since they are compara-
ble to state-of-the-art implementations used in professional
digital audio workstations, such as ProTools.

The reverberator is controlled by five parameters: gain,
delay, channel delay, frequency cutoff and wet/dry gain. A
reverberation effect is described by five measures: rever-
beration time, echo density, clarity, central time, and spec-
tral centroid. It is shown in Figure 7.

The equalizer is controlled by forty second order filters,
each centered around logarithmically spaced frequency
bands. At each band, we place a peaking filter at its cen-
ter frequency. The strength of each filter is controlled by a
gain value. Each equalization setting is then described by
forty gain values, with each gain value corresponding to a
boost (positive gain) or a cut (negative gain) at a particular
frequency.

Both the reverberator and the equalizer are implemented
entirely within the browser, using the Web Audio API,
a graph-based audio processing framework deployed in
modern browsers [20].

3.2 Vocabulary
While one can use any vocabulary that maps words onto

parameter settings, we seed the word-map with the crowd-
sourced vocabulary from the target population described
in Section 4 drawn from the SocialReverb [4] (369 words)
and SocialEQ [5] (394 words) data collections.

Our interface paradigm is language-agnostic. For exam-
ple, To change the language from English to Spanish [5],
one need only substitute in a vocabulary with mappings
between effects and words in the new language. When the
vocabulary for an additional language is detected, Audeal-
ize offers the user the option of selecting it.

3.3 Word-map
We create a 2 dimensional word-map for each produc-

tion tool: one for reverberation and one for equalization.
The map for equalization is shown in Figure 3. The map
for reverberation is shown in Figure 4.

Recall that each word in the vocabulary for a produc-
tion tool has a mapping to the parameters required to elicit
that word. We construct the map for each using multi-
dimensional scaling [21]. Multi-dimensional scaling is a
method for projecting a higher dimensional space into a
lower dimensional one, by preserving the distances be-
tween elements in the space. For reverberation, we map a 5
dimensional feature space (the five parameters controlling
the reverberator) to a 2 dimensional space. For equaliza-
tion, we map a 40 dimensional space (40 frequency bands)
down to a 2 dimensional space. The result is a 2 dimen-
sional map for each effect where closely related effects are
placed near one another. The user may click on a word to
hear the resulting audio effect. The size of the word on
word-map correlates with the consistency of the definition
for that word in the crowdsourced data.

Users explore the space of effects by clicking and drag-
ging around the map, using the words as a guide. When

a word is selected, the associated effect is applied to the
sound. Words near each other have similar effects.

3.4 Search
If the user would rather quickly jump to a concept, such

as “boomy”, “underwater” or “shrill”, they can type the
word into the search box. If the interface knows the rela-
tionship between the descriptor and the audio effect setting,
we jump to it immediately. If the interface knows the rela-
tionship, but for the other effect (e.g. the user is searching
on the reverb map, but the word is found on the equaliza-
tion map), it suggests that they switch effects.

If the user types in a word not found on either effect
map, the interface searches WordNet [22] to find the clos-
est available synonyms on the map and suggests those. For
example, if the user types “shrill” into the reverberation
search box, the interface responds with “Try sharp, high,
high-pitched, or try checking the EQ map”. We also sug-
gest that the user can try teaching the word to Audealize.

3.5 Teaching and updating the interface
If there is no word or synonym on the word-map that ad-

equately describes the user’s concept, the user may teach a
new word to Audealize. The system asks the user to rate a
series of audio manipulations of a sound in terms of how
well they evoke the concept. This training method is based
on the one used in [5] and [17]. To speed learning, we
use the active and transfer learning techniques developed
in [18] and inspired by [23]. This lets Audealize learn the
mapping between a word and an equalization setting af-
ter only 8 user-rated examples. For reverberation, the user
must rate 18 examples. These examples are chosen to cover
the relevant space of possible equalization and reverbera-
tion effects.

At the end of the teaching process the training data is
stored on our server, the system asks how well the learned
effect matches the user concept and the word is immedi-
ately included in the local map for the user.

Each day, the system automatically pulls all training data
from the database, and if a learned word passes inclusion
criteria, it is incorporated into the standard map for all
users. The inclusion criteria depends on the data source.
For SocialReverb, we use the inclusion criteria described in
[11]. For SocialEQ, we use the inclusion criteria described
in [5]. For data coming from Audealize, we use inclusion
criteria incorporating the number of users who have taught
Audealize the word (at least 2), how long the average user
took to teach Audealize the word (at least 50 seconds), and
the number of examples rated by each user during teach-
ing (at least 5). These are proxies for the effort put into
teaching Audealize. Only words with high-effort teaching
sessions from multiple users are incorporated into the stan-
dard map. The size of the word on the map is scaled by the
agreement between users.

3.6 Incorporating a signal-parameter interface
Below the word-map interface we provide a button

that, if clicked, reveals a traditional interface of signal-
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parameter controls (see Figures 11, 12). This lets users
explore the space of effects with the map, and then, if
they desire, refine the effect using the signal-parameter in-
terface. As a word is selected in the map, the traditional
controls are updated to reflect the word’s settings. As the
effect is manipulated with the signal-parameter interface,
the most closely related word in the map is highlighted.
This helps the user learn mappings between the signal-
parameter space and the descriptive words the general pub-
lic would use to describe the resulting effect.

Audealize can be accessed at http://audealize.appspot.com.
It works entirely inside the browser and is best viewed via
recent versions of Google Chrome.

4 Crowdsourced vs. Preset Vocabularies

Our goal is to build tools for a target population that
are not expert audio engineers. Our approach is to pa-
rameterize the tools in terms of programmatic vocabulary
that is easy for them to understand. The most straightfor-
ward way of doing this is to learn the vocabulary from the
target population. To define a vocabulary of audio terms
for laypeople, we used the crowdsourced vocabularies col-
lected in the SocialEQ [5] and SocialReverb [4] projects.
Both crowdsource a vocabulary from hundreds of Amazon
Mechanical Turk workers. As Mechanical Turk sources
workers from the general population, it is a reasonable pop-
ulation for a tool designed for non-experts in audio pro-
cessing.

While the exact vocabulary may vary if one were to
select a population of acoustic musicians, we expect the
broad results to be similar, since neither group tends to
have expert knowledge nor expert vocabulary for sound
engineering. If one were to expect a population to have a
largely different vocabulary (e.g. Spanish speaking acous-
tic musicians vs English speaking electrical engineers), one
would crowdsource a new vocabulary as done in SocialEQ
[5] and SocialReverb [4].

Existing popular audio production tools attempt to sim-
plify interfaces by providing expert-generated lists of pre-
set effects combinations (preset lists) labeled with natural
language terms, such as “clear.” These preset lists align
words with tool settings and have both the words and ac-
tionable definitions (effects parameter settings) for what
the words mean. Why, then, not use one of these readily
available vocabularies? To establish whether a vocabulary
drawn from the preset lists of existing tools would be use-
ful for a given target population of users we need to answer
the following question: How large is the shared vocabulary
between the preset lists and the target population?

SocialEQ [5] provided a crowdsourced vocabulary
of 394 user-generated adjectives for equalization (e.g.
“warm”), giving the relationships between each word and
the settings for a parametric equalizer. SocialReverb [4]
crowdsourced a similar relationship between a vocabulary
of 369 user-generated adjectives and the settings for a
parametric reverberator.

We collected the preset audio production vocabularies
by examining preset lists in popular commercial equaliza-
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Fig. 8. Overlap between three sets of vocabulary for reverbera-
tion - preset vocabulary from Ableton (69 words), Audition (120
words), and the vocabulary used by the target population (369
words).

tion and reverberation tools. This dataset consists of 168
descriptors for reverberation and 239 descriptors for equal-
ization, and was collected from two popular, state-of-the-
art audio production environments - Adobe Audition and
Ableton Live. An equalization or reverberation setting is
associated with each of these descriptors.

Figure 8 shows the overlap between the three reverber-
ation vocabularies we collected - words in preset labels
from Adobe Audition, words in preset labels from Able-
ton Live, and words used by our target population. Only
15 words are shared between all three vocabularies: Able-
ton (69 words), Audition (120 words) and the target pop-
ulation (369 words). Between the two preset lists, only 24
words are shared. If we combine the Ableton and Audi-
tion vocabularies and call it the “preset” vocabulary, just
38 words are shared between presets and the target popula-
tion. This is just 10.2% of the total vocabulary used by the
target population.

Figure 9 shows the overlap between the three vocabular-
ies for equalization. Only 5 words are shared between all
three vocabularies: Ableton (73 unique words), Audition
(197 words) and the target population (394 words). The
Ableton and Audition vocabularies share only 31 words.
If we combine the Ableton and Audition vocabularies and
call it the “preset” vocabulary, only 27 words are shared
between the experts and target population, making for just
6.8% of the total target population vocabulary. This indi-
cates a similar problem as with reverberation - the tool
builders don’t share language with each other, or with our
target population.

Most words used by the target population are not found
in the preset lists. What about the overlap words shared be-
tween Abelton, Audition and laypeople? Do all three share
a definition for each word? For reverberation, we take each
impulse response associated with a descriptor in preset vo-
cabulary and calculate a descriptor definition using the re-
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Fig. 9. Overlap between three sets of vocabulary for equalization
- preset vocabulary from Ableton (73 unique words), Audition
(197 words) and the target population (394 words)

verberation time, echo density, clarity, central time, and
spectral centroid as in [4]. We then find the distance be-
tween the preset definitions and the crowdsourced defini-
tion for a descriptor. The smallest distance between defini-
tions for a descriptor found in both vocabularies was for the
descriptor “rich”. This distance corresponds to .875 sec-
onds difference in reverberation time, a difference in the
cutoff frequency of over half a musical octave (451 Hz to
277 Hz), and a 14 decibel jump in clarity. Each of these
differences means a drastic difference in how the audio ef-
fect is perceived by listeners. This indicates that even when
the tool-designers and the target users (laypeople) share a
word, it is unlikely that the two populations agree on what
the word means.

Results are similar for equalization. For each shared
equalization descriptor, we compare each preset equaliza-
tion curve, with the crowdsourced equalization curve using
Pearson correlation. We find the definitions are poorly cor-
related, with the best correlation found to be .438 (“dark”),
and the worst to be −.164 (“funky”). What is more, the def-
inition used in Ableton Live frequently did not agree with
that from Adobe Audition. An example of this for equal-
ization is shown in Figure 10. Here one preset (Ableton’s)
shows a rough agreement with the crowd, while the other
(Audition) has a very different equalization curve.

The weak overlap between crowdsourced and preset vo-
cabularies speaks to a disconnect between tool builders and
lay populations when describing audio effects. Therefore,
an interface using preset vocabulary would be ill-suited for
use by our target population (and, likely other non-experts).
For this reason, we use a vocabulary grounded in descrip-
tors crowdsourced from the target population, rather than
one curated by the professional toolbuilders. To build a vo-
cabulary for a different target population (e.g. professional
recording engineers, orchestral musicians), one would run
a data collection on that target population and build the in-
terface from the resulting data.
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Fig. 10. Comparing the concept ‘clear’ in presets in professional
audio production environments and as learned from the target
population.

5 User study

We have established why we use a vocabulary learned
from the target population. Audealize leverages word
learning and crowdsourcing approaches to collecting this
vocabulary that were validated in prior work. Therefore,
we focus on the efficacy of the crowdsourced word-map
interface created using this vocabulary compared to signal-
parameter interfaces. The study seeks to answer the follow-
ing questions:

Q1. Do participants prefer a crowdsourced word-map to a
signal-parameter interface for programmatic audio pro-
duction?

Q2. Do participants prefer a crowdsourced word-map to a
signal-parameter interface for non-programmatic audio
production?

Q3. Do participants show better absolute performance using
a word-map for non-programmatic audio production?

Q4. Does the effectiveness of the word-map degrade grace-
fully as the task increases in difficulty?

5.1 Experimental Design Overview
We designed a study that balances a number of factors.

There are two production tools: an equalizer and a rever-
berator. There are two interfaces for each tool: a crowd-
sourced word-map (Audealize) and a signal-parameter in-
terface. There are two tasks - match-word (which simu-
lates a programmatic audio production task) and match-
effect (which simulates a non-programmatic production
task). There are two audio files to modify. Each task has
three difficulty levels. There are three variants at each of
the three difficulty levels. Each participant always did one
task from each of the three difficulty levels. Therefore there
are 2 ∗ 2 ∗ 2 ∗ 2 ∗ 33 = 432 unique conditions in the exper-
iment. We now describe the flow of a single participant ses-
sion. Detailed descriptions of tasks, audio files, etc. follow.

Each person participates in one session dedicated to ei-
ther the match-word task or the match-effect task. Each
session (whether for the match-word or match-effect task)
has the same outline:
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1. Selection of Conditions: The system randomly selects
which audio file to use. A set of 3 (one hard, one inter-
mediate, one easy) effects (for match effect) or words
(for match-word) is selected. These are held constant
for both interfaces. The ordering of control and test in-
terfaces is randomly selected. The production tool to use
(reverberation or equalization) is chosen by the system.

2. Training on Both Interfaces: The participant is pre-
sented with the chosen audio file. They are given two
minutes to play with the audio using the production tool
via either the signal-parameter interface or the word-
map interface. They then have two minutes to use the
other interface. Presentation order between interfaces is
randomized.

3. Interface A: Either the control or the test interface is
selected randomly. The participant performs the test on
the hard, then the intermediate, and finally the easy con-
dition. After each condition, the participant gives feed-
back on the task (see below)

4. Interface A feedback: The participant gives overall feed-
back about Interface A (see below).

5. Interface B: The participant performs the test with the
other interface. The effects, audio, order of presentation
and feedback prompts are identical to those for Interface
A.

6. Interface B feedback: The participant gives overall feed-
back about Interface B.

7. Exit comments: at the end of the survey, we ask the par-
ticipant to provide any comments on either interface that
they feel it would be helpful to share.

We selected the hard, intermediate, easy order of tasks
to provide the most extreme range of difficulty for the test.
Placing the hard task first ensures minimal training and the
most difficult scenario. Placing the easy task last ensures
maximal learning as well as the easiest scenario. Since a
pilot study showed a single user session (three tasks on
two interfaces for a given audio production tool and given
sound file) takes on the order of 10 minutes, we felt that
fatigue was unlikely to be a strong factor.

After each task in a session, the user is presented with
the following statements:

• I achieved the goal.
• I was satisfied with my experience using this interface.
• I was able to find relevant audio effects easily.

For each statement the participant is asked to express a
level of agreement using a continuous slider ranging from
0 (disagree) to 1 (strongly agree).

Once all three matching tasks (hard, intermediate, easy)
are complete, the user is presented two final statements and
asked to express their level of agreement:

• I enjoyed using this interface.
• I understood how to use the interface to achieve a spe-

cific goal.

Finally, participants were provided a free-form comment
box where they could leave feedback.

5.2 Match-word task
In the match-word task, we present an audio recording

with no audio effects applied to it, along with a descriptive
word (e.g. “underwater”). The participant is asked to imag-
ine what audio manipulation embodies the word and use an
audio production tool (e.g. reverberation or equalization) to
alter the recording to make it embody the descriptive word.
The interface for the tool is either the test (crowdsourced
word-map) or control (signal-parameter) interface. This
simulates a programmatic audio production task, which
Audealize was designed for.

This task has three levels of difficulty. The hardest is
where the word is not present on the map. Here, partici-
pants must find a synonym in the map to get at the same
effect. To construct this case, we take a word in the map,
and delete it from the interface. In the intermediate and
easy levels, we ask the user to match words that are in the
map. The intermediate level draws from a set of medium
confidence words, and the easy level draws from a set
of high confidence words. Each difficulty level is associ-
ated with a set of three words, from which one is chosen
for the participant. For reverberation, the three sets are:
easy - chaotic, underwater, boomy, intermediate - under-
ground, bells, crisp, and hard (not shown on map) - crash-
ing, oceanic, tunnel. For equalization, the three sets are:
easy - tinny, hollow, deep, intermediate - harsh, clear, muf-
fled, and hard (not shown on map) - shrill, clean, mellow.

5.3 Match-effect task
In the match-effect test we present the user with two

variants of the same underlying audio file: the original file,
and a version altered using a production tool (e.g. a rever-
berator). The user is then presented the same effect tool
used to produce the altered file. The interface for the tool is
either the test (crowdsourced word map) or control (signal-
parameter) interface. They are asked to use the tool to mod-
ify the original file to match the altered file. This simulates
a common audio production task - replicate an effect heard
in an existing recording.

Matching an effect is the production task that signal-
parameter interfaces are designed for. As such, we would
not expect Audealize to out-perform traditional interfaces
on any version of the task. We can, however, choose to
make the target sound be one modified by an effect cor-
responding to a word in the map. This lets us create three
difficulty levels: hard (there is no corresponding word on
the map), medium (there is a corresponding word on the
map, but it is not prominent on the map), and easy (the
corresponding word is prominent).

5.4 The Control and the Test Interfaces
In the control condition, the participant is provided a

signal-parameter interface with 5 parameters (for reverber-
ation) or a signal-parameter interface with 40 parameters
(for equalization). These interfaces directly control the un-
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Fig. 11. The signal-parameter interface for an equalizer for the
user study. The effectiveness of this interface for the matching
tests was compared to the word-map interface, shown in the upper
half of Figure 3.

Fig. 12. The signal-parameter interface for a reverberator for the
user study. The effectiveness of this interface for the matching
tests was compared to the word-map interface, shown in the upper
half of Figure 4.

derlying parameters of the effects tools. The control rever-
beration interface is shown in Figure 12. The control equal-
ization interface is shown in Figure 11.

While more advanced interfaces for reverberation and
equalization exist, such as ones that allow you to draw the
equalization curve or parametric equalizers that give knobs
to control center frequencies and Q, these interfaces still
force the user to navigate the signal-parameter space rather
than the programmatic space. Graphic equalizers and para-
metric equalizers both force the user to think in terms of
frequency bands and manipulating their levels. This is also
true for interfaces that let you draw the EQ curve. We be-
lieve this makes them all fundamentally the same in the
underlying mental model that must be created to use the in-
terface effectively. A graphic equalizer is one well-known
representative interface of this interaction model and so is
the one used to compare to in the study.

In the test condition, the participant is shown a (slightly)
simplified version of the Audealize interface. The crowd-
sourced word-map and search box are available, along with
the effect on/off and gain. The “show traditional interface”
and “teach us a word” parts of the interface are removed.

5.5 The Audio Data
We used two audio files for all tasks in this study: a 10

second recording of an electric guitar (solo) and a 14 sec-
ond recording of an acoustic drum kit (solo), both recorded
at a bit depth of 16 and a sample rate of 44100 Hz. These
two audio recordings were also used in the SocialReverb
data collection [4]. The recordings were encoded as .mp3
[24] at a bitrate of 320kbps. Painter and Spanias [25]
showed that this encoding is perceptually indistinguishable
from uncompressed audio.

5.6 Participant recruiting and inclusion criteria
We recruited participants for our user study from Ama-

zon Mechanical Turk [26]. Mechanical Turk provides mea-
sures of worker reliability that we used to pre-screen partic-

ipants. We only allowed workers with a 97 percent positive
review rating and who had performed at least 1000 tasks on
Mechanical Turk. A study of the demographics of Amazon
Mechanical Turk workers [27] indicates that the majority
of workers are from the US and have a roughly equal gen-
der balance.

Our second inclusion criterion was passing a hearing
test, based on one used in a prior web-based study [4].
The participant is presented two sequences of tones, each
of which has between 2 and 8 tones in ranging in pitch
from 50 Hz to 7000 Hz, and must report how many tones
are in the sequence. For each sequence, they must report
the correct number of tones.

In total, there were 432 participant sessions for the user
study - 108 each for match-effect equalization, match-
effect reverberation, match-word equalization and match-
word reverberation. Each participant passed the hearing
test and was also confirmed by Amazon as having a good
work record.

5.7 Performance Measures
For statistical hypothesis testing, we use the paired sam-

ple Wilcoxon signed-rank test, with samples being paired
within a single participant session (a crowdsourced word-
map interface versus a signal-parameter interface for the
same word or effect and the same audio example.

We analyze the results from our user study in two ways:
self-reported performance and absolute performance. For
self-reported performance, we look at mean user responses
to the prompts described in Section 5.1. User responses
range from 0 (strongly disagree) to 1 (strongly agree). This
is applicable for both the match-word and match-effect
tests on both reverberation and equalization tools.

The absolute performance compares the user-generated
audio effect to the target audio effect. As such, it only ap-
plies to the match-effect test. For each effect (reverberation
and equalization) we must define a measure that expresses
a the difference between the goal effect, g, and the user-
provided effect, u.

We characterize reverberation as was done in previous
studies [4] [28]. We measure five perceptually-relevant fea-
tures from the impulse response for a reverberation effect
- reverberation time (RT60), echo density, clarity, central
time, and spectral centroid. Therefore, each reverberation
effect is characterized by a five-dimensional vector.

For reverberation, we use a normalized Euclidean dis-
tance to measure the absolute quality Q(g,u) of a user
attempt to match a goal effect. After calculating distance
d(g,u) between each pair of goal and user effects in a
test, we scale distances. We then subtract from the maxi-
mum distance to get a performance measure ranging from
0 (worst) to 1 (best).

For the absolute measure on the match-effect task for
equalization, we use Pearson correlation, rather than Eu-
clidean distance, since it captures relative trends, rather
than absolute distance, which is important when compar-
ing equalization curves. With this distance measure, getting
the exact boost or cut of each frequency measure is not re-
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quired for good performance. Instead, the participant just
has to match the relative shape of the equalization curve
for good performance. Each equalization curve consists of
a 40 dimensional vector, where each dimension indicates
the boost or cut of a particular frequency. This is distinct
from the reverberation case, where absolute position in the
feature space is the best measure. Note, this measure ranges
from −1 (inverse correlation) to 1 (perfect correlation).

5.8 Results
5.8.1 Self-reported results

Table 1 shows the mean user responses to the prompts
for both the match-effect and match-word tasks on both
equalization and reverberation. In every comparison, the
mean response for the word-map is on the left and the mean
response for the signal-parameter interface is on the right
(e.g. [word-map vs. signal-parameter]).

Recall that the match-word task is designed to model a
programmatic audio production task, where the goal is to
find an effect that evokes a word. The mean user responses
are higher for the word-map on all prompts and both audio
production tools. In every case, the difference is statisti-
cally significant at the p < 0.05 level. This indicates that
the word-map is preferred over signal-parameter interfaces
for programmatic audio production, regardless of whether
the tool is an equalizer or a reverberator. This answers Q1
in the affirmative. A word-map is preferred for program-
matic audio production by this population, regardless of
underlying tool.

The match-effect task is one where the goal is to take an
unmodified recording and change it to match a recording
that has been modified with an audio effect. We expected
signal-parameter interfaces to be more well-suited for this
task than a word-map.

For reverberation on the match-effect task, the average
user response to all questions was higher for the word-map
than for the signal-parameter interfaces. This said, the dif-
ference was only statistically significant for the question
”I was satisfied with my experience using this interface.”
For equalization on the match-effect task, we find statisti-
cally significant difference in favor of the word-map at the
p < .05 level for all questions. This is a surprising result,
since we expected the signal-parameter interfaces to per-
form significantly better on the match-effect task. This in-
dicates that a crowdsourced word-map may be better suited
for equalization by non-experts than signal-parameter in-
terfaces, when the user is a non-expert.

Thus, for non-programmatic production, users find the
word-map to be an effective alternative to the signal-
parameter interface (Q2), and it has been shown to beat
the signal-parameter interface convincingly on the equal-
ization task. Here, the production tool matters. One possi-
ble explanation for the difference is that the number of fre-
quency bands on equalization is 40, while the reverberator
had only 5 controls. Perhaps the advantage of a word-map
increases as the number of controls to be manipulated in-
creases. A future study will be required to determine this.

Hard Intermediate Easy

Match-effect difficulty

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rf

o
rm

a
n
ce

 m
e
a
su

re

*

Absolute performance by difficulty (reverberation)

Word-map (left) Signal-parameter (right)

Fig. 13. Match-effect test: absolute performance for reverber-
ation broken down by task. The * indicates statistical signifi-
cance between distributions at a p-value < .01. We find signif-
icant difference in favor of the word-map interface in the easy
task. N = 108 for each box plot.
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Fig. 14. Match-effect test: absolute performance for equalization
broken down by task. The * indicates statistical significance be-
tween distributions at a p-value < .01. N = 108 for each box plot.
We find statistically significant differences across all three tasks.

5.8.2 Participant Comments
In the freeform response box provided to study partic-

ipants, many people wrote comments that indicate they
found the word-map approach, which uses lay vocabulary
to control audio effects, to be a compelling alternative to
the traditional signal-parameter approaches. Representa-
tive quotes include:

“I love the word interface! I am a musician and also a
writer who has written professionally about music, and the
word interface matches the way my brain works, perfectly.
Where/when can I get this?”

“I hate the traditional EQ interface and always have dif-
ficulty getting what I want, but this one absolutely makes
sense for me. So cool!”
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Prompt Mean response
(reverberation,
match-word)

Mean response
(reverberation,
match-effect)

Mean response
(equalization,
match-word)

Mean response
(equalization,
match-effect)

I achieved the goal. .833 vs .712 .707 vs .668 .867 vs .648 .806 vs .574
I was satisfied with my
experience using this
interface.

.768 vs .679 .653 vs .596 .842 vs. .531 .812 vs .464

I was able to find relevant
audio effects easily.

.749 vs .628 .557 vs .543 .842 vs .499 .762 vs .386

I enjoyed using this
interface.

.782 vs .688 .664 vs .573 .876 vs .495 .862 vs .420

I understood how to use
this interface to achieve a
specific goal.

.856 vs .735 .768 vs .715 .888 vs .574 .886 vs .639

Table 1. Mean user response to select prompts for match-word and match-effect. Each column is formatted as ‘[word-map] vs [signal-
parameter]’. Responses could range from 0 (strongly disagree) to 1 (strongly agree). Boldface indicates statistical significance between
the user responses for the prompt at a p-value < 0.05. N = 324 per condition for the upper three prompts, N = 108 per condition for
the lower two.

“I felt like I just didn’t even know where to start with
Interface B [signal-parameter], and that I could play around
minutely with all of the sliders for hours and still not be
able to match the effect. It frustrated me very quickly.”

“Wow, I can’t even begin to explain how much I liked
Interface A [word-map] better than Interface B [signal-
parameter]. I always dreamed of having a big old equalizer
in my stereo system after I graduated from college, now I
can only imagine what a nightmare it is to adjust it every
time you want to achieve some type of sound. Interface A
[word-map] makes intuitive and visual sense. Interface B
[signal-parameter] made me want to tear my hair out.”

“I know the second interface [signal-parameter] allows
fine tuning and is probably better for someone experienced
with this type of activity, but since I’m not, I found the first
interface [word-map] much easier to work with and more
intuitive to use.”

The comments indicate that there is a population that
would like interfaces such as the word-map as an alterna-
tive to the existing signal-parameter interfaces. Comments
also indicate that a mix of the two interfaces is desired, with
the word-map used for high-level control, and the signal-
parameter for fine-tuning. This feature was not in the test
interface for the experiments, but is in the deployed version
of Audealize.

5.8.3 Absolute Results
For the match-effect task, we can augment self-reported

results with absolute measures. Figure 13 shows how
closely each user matched the target reverberation effect
using the word-map interface versus the same person using
the signal-parameter interface.

For reverberation, we find in the easy task, where the ef-
fect matches one associated with a high-confidence word
on the map, performance skews significantly higher for
our interface than the signal-parameter interface. In the
hard and intermediate cases, the performance of both sys-
tems were not statistically distinguishable (Q3). Figure 14

shows absolute performance for equalization. For equal-
ization, we find statistically significant difference (at the
p < .01 level) performance on all three tasks for in favor
of the word-map.

Those using the word-map interface also show no degra-
dation in performance as the task difficulty increases (Q4).
This holds true for both reverberation and equalization.
Since difficulty levels are equal in all cases for the signal-
parameter interface, we do not expect and do not see mean-
ingful differences in performance for this interface. The
signal-parameter interface, however, does show worse per-
formance on the easy task. We did not expect to see this
result. Recall that our design ordered the tasks hard, inter-
mediate, easy. The intent of this was to magnify the dif-
ferences between difficulty levels by putting the easy case
last, increasing the learning effect. We did not expect a fa-
tigue effect, given that the active part of a participant ses-
sion (doing the three tasks per interface for both interfaces)
takes an average of about ten minutes.

We speculate that there may be a fatigue effect in match-
ing reverberation effects for a novice that becomes evident
for the signal-parameter interface sooner than it does for
the word-map. This fatigue effect is not the result of order-
ing the signal-parameter interface second. Interface order
was counterbalanced, with half the trials putting the signal-
parameter interface first. These results indicate that a more
challenging task will have to be designed to study the ef-
fects of mismatch between the words in the interface and
the goal effect. A further experiment will be required to test
for interface fatigue.

For equalization, the median time to completion for the
signal-parameter interface was 77.91 seconds, and the me-
dian time to completion for the word-map interface was
56.28 seconds. For reverberation, the median time to com-
pletion for the signal-parameter interface was 71.35 sec-
onds, and the median time to completion for the word-map
interface was 61.43 seconds.
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6 Conclusions and Future Work

Participants prefer the word-map interface on the match-
word task. This was expected, as it is what the interface
is designed for: programmatic audio production. The rela-
tive effectiveness of the word-map interface for the match-
effect task, which it was not explicitly designed for, is sur-
prising. One would expect the fine control afforded by the
signal-parameter interface would let the user match the ef-
fect more closely than would be likely with the word-map.
It may be that for novices, the signal-parameter space is
harder to navigate than the programmatic space, eliminat-
ing the advantage of fine-grain control.

This indicates that crowdsourced language, in concert
with a meaningful word-map visualization, is an effective
interaction paradigm for novice users of audio production
tools, for both programmatic and non-programmatic goals.

Audealize is an example of a more general design ap-
proach. The crowdsourcing methodologies and interface
paradigms used to create the 2D word-map interface of Au-
dealize can be generalized to almost any audio effect, such
as compression, chorus, tremolo, etc.

The results from our user study show that word-map in-
terfaces are both preferred by and effective for non-experts.
The ideas presented here show a clear path to crafting ac-
cessible and effective interfaces in other domains.

Another promising angle to explore is to collect vocabu-
laries from a variety of target populations, including differ-
ent kinds of musicians (hip-hop, classical, etc), and differ-
ent linguistic groups (Spanish, Korean, Chinese) By col-
lecting these words, we would increase the accessibility
of the interface and find interesting relationships between
how audio effects are described in different languages. We
are interested in how effectively Audealize crosses linguis-
tic and cultural boundaries. We are also interested in how
vocabulary overlaps between audio effects.

The automatically generated, crowdsourced word-map
interface embodied by Audealize is a useful alternative in-
terface approach for audio production that may also apply
to other domains (e.g. image manipulation) and points the
way for rethinking the relationship between interface con-
trols and the underlying tools used for media production.
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