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ABSTRACT

Audio source separation is the process of isolating individ-
ual sonic elements from a mixture or auditory scene. We
present the Northwestern University Source Separation Li-
brary, or nussl for short. nussl (pronounced ‘nuzzle’)
is an open-source, object-oriented audio source separation
library implemented in Python. nussl provides imple-
mentations for many existing source separation algorithms
and a platform for creating the next generation of source
separation algorithms. By nature of its design, nussl
easily allows new algorithms to be benchmarked against
existing algorithms on established data sets and facilitates
development of new variations on algorithms. Here, we
present the design methodologies in nussl, two experi-
ments using it, and use nussl to showcase benchmarks
for some algorithms contained within.

1. INTRODUCTION

Audio source separation is the process of isolating indi-
vidual sonic elements from a mixture or auditory scene.
The underdetermined case is where there are fewer mix-
ture channels (e.g. a stereo recording) than sources (a
string quartet). Examples of underdetermined source sep-
aration include extracting a single speaker from a single-
mic recording of a crowded cocktail party, extracting a
singer from a rock band recording, or removing an extrane-
ous car horn from a field recorded interview. Applications
of source separation include end-user tools for extracting
vocals (e.g., Audionamix ADX Trax), upmixing vintage
recordings to stereo or 5.1 surround sound, and as a pre-
processing step for speech recognition [15] and other audio
tasks.

There have been many approaches taken to source sep-
aration in the underdetermined case. These include Non-
negative Matrix Factorization (NMF) [37, 38], harmon-
ic/percussive separation [7], deep learning [11, 13, 14, 16,
21, 25], pitch tracking [5, 34], spatialization [8, 32], re-
peating vs non-repeating elements [29,30,36], low-rank vs
sparse decomposition [12], and common fate [24, 39, 44].
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The research community has centered around a col-
lection of common data sets to benchmark results from
these different approaches. Perhaps the best known are the
data sets used for the recurring Signal Separation Evalua-
tion Campaign (SiSEC) [19, 42]. SiSEC previously used
DSD100 [20],and now uses both DSD100 and MedleyDB
[1], calling the combined data set MUSDB18 [28]. Other
common data sets include iKala [2], MIR-1K [3], TIMIT
[10], and WSJ0 [9]. The community also typically uses
the signal quality measures provided by BSS-Eval [6, 42]
(SDR, SIR, and SAR) when reporting results.

Though there is some debate about this [4], it can be
argued that using common data sets and evaluation mea-
sures strengthens research through standardizing metrics
by making new and existing research directly compara-
ble. While the source separation community has common
data sets and common evaluation measures, there exists no
such common code repository for actual implementations
of proposed algorithms.

Vandewalle et al. [41] argue that in the computational
sciences, implementation details are crucial to reproduc-
ing the results of academic papers, despite being routinely
omitted from publications. They establish six degrees of
reproducibility, scored from 0 (lowest) to 5 (highest). A
score of 5 is defined as “The results can be easily repro-
duced by an independent researcher with at most 15 min of
user effort, requiring only standard, freely available tools.”
A 0 indicates research completely unreproducible by an in-
dependent researcher.

The ubiquity of code repositories like Github has al-
lowed many researchers to share their code, but using
Github is not a guarantee of easy reproducibility. A re-
cent seminar 1 convened to reproduce results from six MIR
papers (including two source separation papers) and con-
cluded that not a single paper, despite including code,
scored better than “Can be reproduced, requiring consid-
erable effort” using the reproducibility scorecard by Van-
dewalle et al. [41]. Of the two source separation papers,
both scored “Could be reproduced, requiring extreme ef-
fort.”

This work aims to provide a common platform for re-
searchers to contribute their source separation algorithms
to fill the implementation gap and promote reproducibility
within the source separation research community. Further-
more, this work strives to make every algorithm in the pro-
posed framework achieve the highest reproducibility rating
using the Vandewalle et al. scorecard: reproducible results

1 https://github.com/audiolabs/APSRR-2016
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in under 15 minutes. The Northwestern University Source
Separation Library (nussl) is the culmination of that ef-
fort.

In this paper we will explore nussl and introduce
some core aspects of its design methodology, provide an
outline about how to add a new algorithm to nussl and
benchmark many of the source separation algorithms in
nussl. We also leverage the flexibility of the nussl
framework to implement and test novel combinations of
existing source separation algorithms. We examine how
source separation algorithms interact with methods such as
overlap and add, which apply the same source separation
algorithm to overlapping windows in the mixture and re-
combine the sources afterwards, rather than applying them
to the entire mixture. More information about nussl can
be obtained at the project’s online documentation. 2 A
companion website is also provided for this paper. 3

2. RELATED WORK

The biennial Signal Separation Evaluation Campaign
(SiSEC) [19,42] is an open call for members of the MIR re-
search community to submit source separation algorithms
to be run and evaluated on a common dataset. While the
dataset is widely distributed and used, not all of the code
submissions from previous campaigns have been made
available to scrutinize. Additionally, SiSEC offers no stan-
dard API to adhere to, and only a minimal framework to
work with. We have submitted many algorithms within
nussl to the most recent SiSEC campaign.

Other source separation libraries have been presented
in the past, as well. The Flexible Audio Source Separation
Toolbox (FASST) [23, 35] 4 was written in MATLAB and
C++, but did not have a process for outside submissions.
untwist [33] is an open source Python source separa-
tion library, but it is based on a different design framework
than nussl, implements a different set of algorithms than
nussl, and has no built-in interfaces for common evalua-
tion metrics, data sets, or loading pre-trained models.

3. DESIGN FRAMEWORK OF NUSSL

nussl is built with extensibility in mind. It would be im-
possible to provide implementations for every source sep-
aration algorithm upon the announcement of this library.
As such nussl is built to an API so that the community
can easily add their own algorithms, models, datasets and
have them automatically work with every other aspect of
nussl.

Under the hood, nussl uses many common Python
tools for signal processing and machine learning,
such as librosa, numpy, scipy, scikit-learn,
mir eval, musdb, and museval, so developing with
nussl should be familiar to any MIR researcher working
in Python.

2 https://interactiveaudiolab.github.io/nussl
3 https://interactiveaudiolab.github.io/demos/nussl.html
4 Related Python library: https://github.com/wslihgt/pyfasst/

1 import nussl
2
3 # Load audio
4 signal = nussl.AudioSignal(’path/to/mix.wav’)
5
6 # Run REPET for foreground/background separation
7 algorithm = nussl.Repet(sig)
8 algorithm.run()
9 fg, bg = algorithm.make_audio_signals()

10
11 # Save results to wav files
12 fg.write_audio_to_file(’fg.wav’)
13 bg.write_audio_to_file(’bg.wav’)

Figure 1: Using nussl to run a single algorithm (REPET
[30] for foreground/background separation) on a single
mixture. In a recent seminar on reproducibility, REPET
scored “could be reproduced, requiring extreme effort.”
nussl aims to improve the reproducibility score of mul-
tiple source separation algorithms, including REPET.

In the next sections, we provide a high-level overview
of some of the more important aspects of the nussl API.
For more information, please see our full online documen-
tation.

3.1 AudioSignal

The main entry point to nussl for end-users and algo-
rithm developers is through the AudioSignal object.
The AudioSignal object has methods for reading and
writing audio, padding or truncating the audio, adding and
subtracting audio signals from one another, checking and
altering properties of the audio, computing invertible sig-
nal transforms (e.g. short time Fourier transform), and
much more. AudioSignal can read all of the most com-
mon audio codecs. Once in memory, audio is represented
as a 2-dimensional (channels and time series within a chan-
nel) numpy array of pulse-code modulated (PCM) sam-
ples.

All source separation algorithms in nussl accept as
their first argument an AudioSignal object. Each
algorithm copies the content of the audio object, per-
forms separation on that copy and returns a set of of new
AudioSignal objects, one per source, leaving the origi-
nal AudioSignal object unchanged.

3.2 Source Separation Algorithms

All source separation algorithms in nussl are encapsu-
lated in classes that are derived from SeparationBase.
For each class, the constructor does minimal set up, the
run() method does the computation required for the
source separation, and the make audio signals()
method returns AudioSignal objects containing the es-
timated signals. An example of this whole process is
shown in Figure 1.

3.2.1 MaskSeparationBase vs SeparationBase

Source separation algorithms in nussl are segregated into
two categories: those that produce a mask and apply it
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Algorithms in nussl
Repetition Other Fore/Background Spatialization Composite
Repet [31] Harmonic/Percussive (HPSS) [7] DUET [32] Overlap/Add
RepetSim [29] Melody Masking (Melodia [34]) PROJET [8] Algorithm Picker [22]
2DFT [36] Component Analysis Benchmarking Neural Networks
Matrix Decomposition ICA [18] High/Low Pass Filter Deep Clustering [11, 21]
NMF w/ MFCC Clustering [38] RPCA [12] Ideal Mask

Table 1: Source Separation algorithms by category currently implemented in nussl.

to a representation (e.g. a spectrogram) built from the
waveform, and those that do separation via other means
(e.g. time domain methods such as independent com-
ponent analysis). The former group of algorithms are
derived from the MaskSeparationBase base class,
which is a subclass of the SeparationBase base
class. The run() method in MaskSeparationBase-
derived algorithms are expected to return mask ob-
jects (see Section 3.2.2). Some algorithms inherit di-
rectly from SeparationBase and have no require-
ment about what their run() method returns. With
MaskSeparationBase separation classes, it is easy to
switch between running an algorithm with a binary or soft
mask.

3.2.2 Masks

Masks are encapsulated by the MaskBase base class.
SoftMask and BinaryMask are the two classes that de-
rive from MaskBase. MaskBase-derived objects have a
numpy array that contains the data, and utilities for apply-
ing masks to AudioSignal objects. SoftMask objects
are applied using a classical approach:

Ŝ
(i)
ω,t =

v
(i)
ω,t∑N

i=0 v
(i)
ω,t

Here, v(i)ω,t is the estimate of source i at frequency ω

and time t, Ŝ(i)
ω,t is the value of the mask for that source

at that time and frequency, and N is the total number of
sources. The BinaryMask objects simply put a 1 when
a source estimate dominates all other source estimates in a
time-frequency bin and a 0 elsewhere. More masking types
(e.g. consistent Wiener filtering [17]) can be implemented
by subclassing MaskBase.

3.3 Evaluation

nussl also has a common interface to evaluate the esti-
mates from source separation algorithms using established
metrics, such as BSS-Eval [6] using implementations from
mir eval [26] or museval [40]. nussl also has meth-
ods for comparing binary masks to an ideal binary mask
using accuracy, precision, recall, and F-Score [43]. Simi-
lar to the rest of nussl, all of the evaluation metrics are
encapsulated by the EvaluationBase base class so that
all of its child classes are built to a common API.

1 import nussl
2
3 m1k = ’path/to/MIR-1K’
4
5 # List of algorithms to test
6 sep_classes = [nussl.RepetSim, nussl.Melodia]
7
8 # Loop through all of MIR-1K
9 for mix, vox, acc in nussl.datasets.mir1k(m1k):

10 mix.to_mono(overwrite=True)
11
12 for alg in sep_classes:
13
14 # Run the algorithm
15 a = alg(mix)
16 a.run()
17 est = a.make_audio_signals()
18
19 # Evaluate results
20 gt = [acc, vox] # Ground truth
21 bss = nussl.evaluate.BssEval(mix, gt, est)
22 scores = bss.evaluate()

Figure 2: Running two algorithms on all of MIR-1K and
evaluating using BSS-Eval.

3.4 Data Sets

Although nussl does not ship with any data sets, it does
provide “hooks” for interfacing with common data sets.
The hooks are basic utilities for reading the audio files into
AudioSignal objects. The user first points nussl to
the top-level directory of the downloaded data set. The
utilities can then iterate through every audio file, a sub-
set of files, or shuffle the order in which they are read.
There structure of the directories is assumed to be Data
sets that nussl can currently interface with include iKala
[2], MIR-1K [3], MUSDB18 [28] (using musdb), and
DSD100 [20]. An example of running multiple algorithms
on the entirety of MIR-1K and evaluating the results using
BSS-Eval is shown in Figure 2.

3.5 Modelers and Deep Learning Models

nussl also contains a section for generic modeling and
matrix manipulation classes. Classes in this section are
not source separation algorithms, but are used by the al-
gorithms in nussl. An example is the Non-negative Ma-
trix Factorization (NMF) class, NMF. This receives a non-
negative numpy matrix as input, factorizes it into a tem-
plate matrix and an activation matrix, and outputs the two
results to be used by a separation algorithm. It does not in-
put or output audio, spectrograms, or masks. For those util-
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Figure 3: SDR evaluations for vocal estimates using
OverlapApp on the MIR-1K data set. Three different
window sizes are shown: 10 sec (red), 20 sec (blue), 30
sec (yellow). Hops are half of the window size.

ities, a wrapper separation class is needed, like NMF MFCC,
which clusters the templates using mel-frequency cepstral
coefficients. Other classes train deep learning models for
separation use. Classes in this section have a more lax API
because of their heterogeneous nature.
nussl currently supports deep learning models written

in PyTorch, but does not ship with any pre-trained mod-
els, only the code to train with. Similar to frameworks
like PyTorch, nussl offers a way to download pre-
trained models from nussl servers for algorithms which
require them. Developers can see what models exist on
our servers and download a models via utilities built into
nussl. There also exists a process for contributers to up-
load their own pre-trained models (see Section 4.2 for more
details).

4. ALGORITHMS IN NUSSL

4.1 Currently in nussl

At the time of this writing, the source separation algo-
rithms are implemented in nussl to the API specifica-
tion are presented in Table 1, by category. The algorithms
currently in nussl provide a good starting point for fu-
ture benchmark work, and we hope to expand the set of
offered algorithms to include many more state-of-the-art
approaches.

4.2 Adding new algorithms to nussl

The process of adding new source separation algorithms
into nusnusslsl is similar to other open source projects,
in many ways. A researcher who wishes to add an algo-
rithm must clone the Github repository, make a new branch
for their algorithm, add their code, push to Github, and
then create a pull request. At this point, the nussl con-
tributing process deviates from that standard open-source
process.

After the new code passes the style and error checks, the
researcher must provide benchmark files for tests. These

can be created by using standard metrics on a set of exam-
ple files. For example, when adding a new algorithm, a re-
searcher could provide BSS-Eval metrics on a few songs
from MIR-1K dataset. If an implementation existed else-
where prior to being incorporated into nussl, then a copy
of the original implementation will be requested to bench-
mark against. Authors of new algorithms, must also pro-
vide a reference to a paper or other documentation which
outlines the algorithm in more detail. Additionally, any
large supplemental materials that are needed for the algo-
rithm (such as pre-trained neural network models) must be
provided so that they can be distributed through nussl’s
API as outlined in Section 3.5.

All of this is outlined in more detail on the contributions
section of the nussl Github page and documentation.

5. EXAMPLE USES OF NUSSL

Because all of the algorithms and supporting infrastructure
in nussl are built to an API, this allows a very simple
way to find novel combinations of multiple source separa-
tion algorithms and evaluate them on a variety of data sets
under different evaluation metrics. In this section, we will
showcase two novel experiments using nussl and present
results from these experiments.

5.1 Cascading algorithms

The nussl API facilitates combining several different al-
gorithms. To illustrate this point, we reproduce and expand
upon work demonstrated by Rafii et al. [27] in combining
rhythm-based and pitch-based approaches to source sepa-
ration.

Rafii et al. present two methods for cascading algo-
rithms: Parallel, where the background and foreground
masks created by each algorithm are combined after the
algorithms run on the mixture; and, Series, where the fore-
ground estimation of algorithm A is fed in as the “mixture”
to algorithm B. The mask estimates, in each case, are com-
bined using weighted Weiner Filtering.

For this experiment, we use four background/fore-
ground algorithms, RepetSim, Separation via 2DFT,
RCPA, and Melodic masking with Melodia. We chose
each pair from the set of algorithms and resulting in a total
of 16 combinations. Based on values reported by Rafii et
al., for running in Parallel we set wB = 1.0 and wM = 0.3
as the weights of the background and foreground masks,
respectively. We set the weight parameter w = 0.5 for
running in Series. All algorithms created soft masks. We
evaluated results using BSS-Eval on the undivided MIR-
1K data set. 5 Mean SDR values (with 1 standard devia-
tion) are shown in Figure 5 for vocals. We find that series
configurations outperform parallel configurations overall,
and RepetSim is best as a second algorithm run especially
when it is also the first.

5 MIR-1K has 110 tracks of mean duration 72.7± 17.3 seconds, that
are divided into 1000 smaller tracks of 8.0 ± 1.8 seconds. The divided
tracks are too small to capture multiple repetitions.
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(a) Benchmarks for the iKala data set. Algorithms apply binary masks to the mixtures and the results were evaluated using
precision, recall, F-Score, and accuracy (precision is red, recall is blue, F-Score is yellow, and accuracy is pink).

(b) Benchmarks for the MIR-1K data set. Algorithms apply binary masks to the mixtures and the results were evaluated
using BSS-Eval (SDR is red, ISR is blue, SIR is yellow, and SAR is pink).

(c) Benchmarks for the MUSDB18 data set. Algorithms apply soft masks to the mixtures and the results were evaluated
using BSS-Eval (SDR is red, ISR is blue, SIR is yellow, and SAR is pink).

Figure 4: Illustrative benchmarks for a set of algorithms and configurations in nussl.
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(a) Running in algorithms in Parallel. (b) Series

Figure 5: Mean SDR for vocal estimations from cascading pairs of algorithms.

5.2 Combining algorithms with Overlap/Add

In addition to classes that run one type of algorithm
(like HPSS, etc), nussl also contains composite algorithm
classes, i.e. those that run other algorithms in nussl. One
such simple example is the OverlapAdd class, which
does the overlap add method when running an algorithm.

In this experiment, we ran two repetition-based algo-
rithms, RepetSim and Separation via 2DFT, wrapped in the
Overlap/Add class to do vocal extraction. We tested three
different window lengths, 10, 20, and 30 seconds, with hop
length at half of the window length and using Hamming
windows. We ran this experiment on the undivided MIR-
1K data set 6 and evaluated the estimates using BSS-Eval.
Results from this experiment show that smaller windows
lead to better vocal separation performance, according to
SDR. These results are shown in Figure 3.

6. BENCHMARKS

In this section, we provide a selection of benchmarks for
a set of algorithms in nussl. We benchmarked all al-
gorithms that explicitly perform vocal separation with de-
terministic output source ordering (i.e. for an output ar-
ray of sources, accompaniment is always index 0 and vo-
cals is always index 1). We ran the algorithms on the
iKala, MIR-1K, and MUSDB18 data sets. We ran REPET,
REPET-SIM, Separation by 2DFT, HPSS, Masking from
Pitch Tracking (using Melodia as the pitch tracker), RPCA,
High/Low Pass filtering (cutoff at 100Hz).

For brevity, we only report one evaluation type for each
data set here. We aim not to be complete, but rather show-
case what nussl is capable of. For iKala, we show
precision/recall/F-Score/accuracy computed from output
binary masks, Figure 4a. For MIR-1K, we show BSS-Eval
metrics computed from estimates using binary masks, Fig-
ure 4b. And for MUSDB18, we show BSS-Eval metrics
computed from estimates using soft masks, Figure 4c.

6 We excluded two signals that were shorter than the largest window
sizes.

All algorithms were run using the default parame-
ter values for the algorithm in nussl’s implementation.
Specifics of all of the parameters are contained in the
project’s documentation website.

7. FUTURE WORK AND CONCLUSION

In the future, we hope to expand upon nussl in a num-
ber of ways. First, while nussl is currently focused on
musical source separation (the expertise of its authors), we
would like to expand it to include source separation meth-
ods for speech. This would also necessitate adding hooks
for speech data sets (like TIMIT and WSJ0) and adding
pre-trained models for speech. Second, we would like to
add an extensible API for spectral transformations. Cur-
rently, the STFT is at the core of AudioSignal, but in
the future, it should be abstracted so that it is easy to run
any algorithm on a CQT, Mel-Spaced STFT, etc.

Finally, and importantly, we would like buy-in from the
MIR and audio community. The aim of nussl is to be-
come the community’s central repository for audio source
separation. This goal is impossible without the support and
contributions of the research community. We encourage
interested participants to read the guidelines for contribut-
ing on this project’s documentation page and get involved.

We have presented the Northwestern University Source
Separation Library (nussl), an open-source, object-
oriented audio source separation library implemented in
Python. nussl implements many popular source sep-
aration algorithms, and a low barrier API for end-users
and developers alike. We have demonstrated its design
framework, including its ability to interface with common
data sets and evaluation metrics. We also showcased two
novel experiments using the API and a set of benchmarks.
This project is actively seeking submissions from eager re-
searchers and avid open source developers. Readers can
find more information at interactiveaudiolab.
github.io/nussl. This work was supported by USA
National Science Foundation Award 1420971.
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