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MUSIC SIGNAL PROCESSING

Humans have devised a vast array of musical instruments, but 
the most prevalent instrument remains the human voice. Thus, 
techniques for applying audio signal processing methods to 

the singing voice are receiving much attention as the world contin-
ues to move toward music-streaming services and as researchers 
seek to unlock the deep content understanding necessary to enable 
personalized listening experiences on a large scale. This article 
provides an introduction to the topic of singing-voice analysis. It 
surveys the foundations and state of the art in computational mod-
eling across three main categories of singing: general vocaliza-
tions, the musical function of voice, and the singing of lyrics. We 
aim to establish a starting point for practitioners new to this field 
and frame near-field opportunities and challenges on the horizon.

Power of the human voice
The human voice dominates nearly all music cultures. The voice, 
through singing, can function as a musical instrument and at the 
same time convey semantic meaning. Theory from the field of psy-
chology suggests that people generally find the human voice espe-
cially salient and powerful and that the human voice is a mean-
ingful factor, perhaps the most meaningful factor, in affecting our 
music-listening behavior. Research has suggested that music exists 
because of the complex system that enables humans to communi-
cate, interpret, and feel emotions via vocal sounds [1]. Given such 
strong anthropological links between music and voice, it is unsur-
prising that singing plays a prominent role in modern music cul-
ture; karaoke, for example, is a billion-dollar worldwide industry. 

Thus, digital signal processing research has long focused on 
methods and techniques for modeling the human voice. Early 
progress in efforts to encode and transmit speech for telecom-
munication systems [2] paved the way for singing-information 
processing, the study of signal processing techniques on the 
human voice in musical contexts [3]. Singing information pro-
cessing can be represented as a cyclic system where, under 
ideal conditions, an audio signal is transformed, via analysis, 
into high-level descriptors or symbols, such as pitch or lyrics; 
rich symbolic information can then be transformed, via synthe-
sis, into audio signals of singing; and, falling between analysis 
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and synthesis, effects can be applied to either audio or sym-
bolic information by manipulating intermediary representations 
between the two domains. A popular vocal effect, for example, 
is that of pitch correction (“autotune”), where a vocal audio sig-
nal is analyzed, the estimated pitch over time is quantized to a 
given key, and the voice signal is resynthesized.

Starting around the end of the 20th century, the field of 
music information retrieval (MIR) has developed techniques 
and methods for various applications of singing-information 
processing. While many researchers have made contributions 
to this field, the work of two groups in particular stands out: the 
Music Technology Group (MTG) at Universitat Pompeu Fabra 
in Spain, under the direction of Xavier Serra, and the National 
Institute of Advanced Industrial Science and Technology (AIST) 
of Japan, under the direction of Masataka Goto. Researchers at 
the MTG have a long history of advancing the state of the art in 
singing-voice synthesis, resulting in both commercial products 
and published studies [4]. Meanwhile, the efforts of AIST are 
noteworthy for their novelty and breadth, spanning use cases in 
music production, education, and consumption [5]. One of the 
more comprehensive reviews of singing-information processing 
research to date appeared as a tutorial at the 16th International 
Society for Music Information Retrieval Conference in Málaga, 
Spain, in 2015 [43]. This tutorial provided an exhaustive list of 
methods, data sets, tools, and applications, including real-world 
examples of different singing styles.

Given the pervasiveness of voice in music, demand is keen 
for improvements in singing-information processing. Now that 
music-streaming services are the de facto way for people across 
the world to not only listen to music but also to discover new 
songs, personalized recommendation is a very promising appli-
cation. A recent study confirms that music-streaming listen-
ers are especially attuned to the perception of singing [6]. Of 
several hundred users surveyed (1.2% response rate), listeners 

indicated that vocals (29.7%), lyrics (55.6%), or both (16.1%) are 
among the salient attributes they notice in music. Additionally, 
the four most important “broad” content categories were found 
to be emotion/mood, voice, lyrics, and beat/rhythm. Meanwhile, 
listeners said and the seven most important vocal semantic cat-
egories are skill, “vocal fit” (to the music), lyricism, the meaning 
of lyrics, authenticity, uniqueness, and vocal emotion. High-level 
content attributes like these can be combined with traditional 
recommendation approaches (e.g., collaborative filtering, factor-
ization machines, or deep networks) to reach a level of nuance 
that would be difficult to achieve with user-interaction signals 
alone (e.g., explicit feedback or curated playlists). Furthermore, 
content-informed methods are necessary for cold-start recom-
mendation (i.e., discovery), an inherent problem for algo-
rithms that rely solely on user signals. Though expert-backed 
approaches, like the one taken by the Music Genome Project 
(https://www.pandora.com/about/mgp), have made considerable 
progress over the last decade, the demand for further improve-
ments is rising along with the seemingly limitless growth in the 
amount of digital music content and in the number of listeners. 
Only through automation of music-content description will it be 
possible to match so much content to so many listeners.

In this article, we focus specifically on the challenge of 
automatically characterizing attributes of the voice in music as 
a self-contained and independently testable problem. A holis-
tic view of singing analysis is diagramed in Figure 1, which 
provides the basic structure of this article. We first outline the 
fundamentals of the human voice and singing, provide nota-
tion to represent singing in recorded music, and introduce com-
mon computational models of the voice. Different applications 
of singing analysis are then grouped by their relationships to 
music and natural language: vocalized sound in general, voice 
in musical contexts, and the singing of lyrics. Having outlined 
approaches to automatically characterizing the voice, we offer 
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some concrete next steps in this research lineage, and we con-
clude with an assessment of potential challenges and opportuni-
ties facing singing analysis research.

Fundamentals of singing
The compression and expansion, or rarefaction, of air molecules 
causes a propagation of oscillations known as an acoustic wave. 
These fluctuations can be expressed as a combination of pure 
sinusoids such that frequencies in the range of 20 to 20,000 Hz 
are perceived by humans as sound. Classified as an aerophone 
in the Hornbostel–Sachs taxonomy, the human voice produces 
sound by moving air, forced from the diaphragm, across the vo-
cal cords, causing them to resonate. This harmonic sound is then 
shaped via the mouth, with varieties of sibilance added from the 
teeth, lips, and tongue. The physiological formation of different 
sounds in the vocal cords and glottis is known as phonation, 
which is how humans convey different phonemes in speech and 
different voicing styles in singing.

Computational approaches to modeling the human voice fall 
into either physical or spectral categories [4]. Much is under-
stood about the human vocal organs, and so physical models 
can be used to demonstrate how the voice produces sound. 
Source–filter theory, an approach that applies to a variety of 
string and wind instruments as well, represents sound produc-
tion as a two-stage process, where a source signal is convolved 
with the impulse response of a filter. The source can be either 
voiced (e.g., periodic vowels like [a]) or unvoiced (e.g., aperi-
odic fricatives like [f]). In the case of a voiced source signal, 
the vocal folds vibrate and generate a signal similar to that of 
a vibrating string. The pitch or fundamental frequency ( )f0  of 
a voiced sound is determined by the rate at which the vocal 
folds vibrate, and subsequent peaks created at multiples of f0  
are called harmonics. Higher frequencies are damped, sloping 
downwards at approximately −12 dB per octave. In the case 
of an unvoiced source signal, turbulent noise is created with 
the teeth, lips, tongue, and, in case of whispering, the glottis. 
The vocal tract, a tube-shaped acoustic resonator that acts as a 
filter, is assumed to be independent of the source signal. The 
resonance frequencies are the direct consequence of the vocal 
tract, causing what are known as formants. They are the main 
contributor to the spectral envelope of the voice (i.e., the rela-
tive amplitudes of the harmonic series) and change along with 
the length and shape of the vocal tract. Compared to the vibrat-
ing vocal folds (source), the vocal tract (filter) can only exhibit 
relatively slow alternations. Formants allow for the articulation 
of different vowels and a wealth of different timbres.

Due to the independence of source and filter, it is possible 
by estimating one component to reconstruct the second. Thus 
in vocal-signal analysis, the spectral envelope is of specific 
interest, since it determines the timbre—everything that is not 
pitch or loudness—to a large degree. One prominent method 
to estimate the filter/spectral envelope is linear prediction, and 
its results are the linear predictive coefficients (LPCs) [2]. The 
basic idea is that the current amplitude of a time-varying digi-
tal signal is predictable (approximately) from a linear combina-
tion of its past values. The error of this linear model equals the 

source signal relating to vocal fold characteristics, thus making 
the source and filter separable.

In contrast, spectral approaches measure the relative contribu-
tions of sinusoidal components in signals, often through short-
time analysis under assumptions of local stationarity. One of the 
earliest approaches used sinusoidal modeling, which fits the fre-
quencies and amplitudes of a number of time-varying oscillators 
to a signal. This method was later extended to model the resid-
ual signal as either noise alone or both noise and transients [4]. 
Though it has the properties of being both compact and complete, 
sinusoidal modeling can be computationally expensive and quite 
sensitive to the presence of other signals. As a result, it is more 
common to model vocal-tract characteristics via mel-frequency 
cepstral coefficients (MFCCs). MFCCs have been used specifi-
cally for music analysis since being introduced by [7] and, until 
the recent popularization of deep learning, served as one of the 
standard features in speech and music timbre analysis. 

MFCCs are computed through a two-stage process. First, 
a mel filter bank is applied to the audio signals, typically via 
the fast Fourier transform for efficiency, such that frequency 
components are collapsed into 30–120 half-overlapping trian-
gular-shaped filters along a frequency scale grounded in psy-
choacoustics. Next, the signals are transformed into the cepstral 
domain by computing and applying a discrete cosine transform 
(DCT) to the log-magnitude spectra, thus decorrelating the 
mel-filter bank coefficients. Discarding some of the higher-
order coefficients of the DCT results in the representation of a 
low-pass-filtered spectral envelope, which can be reconstructed 
by applying the inverse DCT. More recently, the “fluctogram” 
has been proposed as an alternative time–frequency representa-
tion specific to the singing voice. Designed to encode the tem-
poral evolution of the fundamental frequency and its harmonics 
[8], the fluctogram is computed for several frequency bands 
based on the cross-correlation of a log-scaled spectrum to the 
succeeding spectrum, exploiting the characteristic of the voice 
as a continuous pitched source.

Importantly, the motivation for these models is based on 
the assumption that the signal of interest contains only a single 
voice recorded in isolation. However, most recordings in con-
sumer music settings are the result of professional sound pro-
duction, also referred to as “mixing,” an artistic process that 
combines a number of audio signals arranged in time, subject 
to any number of complex effects processors (e.g., compression, 
equalization, reverb, and distortion). For clarity, this process 
can be expressed as the summation of N digital audio signals, 
notated as [ ] [ ] [ ] [ ] ,x t t f x t tn

N
n n n0 )a zR= = ^ h  where a  defines 

a time-varying gain and f an arbitrary, often nonlinear, effects 
chain with its composite parameters [ ].tnz  In this article, we 
use “recorded music” to mean the resulting signal [ ],x t  and 
“voice” as all K signals, , ,x K Nk #  that were produced by 
human voices (note, however, that the true number of voice sig-
nals, K, in a recording will not necessarily correspond to the 
number of distinct voices a listener perceives). 

Often in music, one or more of these voice signals will 
emerge as the “lead” voice, whereby a typical listener perceives 
a single voice as being particularly salient. Robust, human-level 
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 understanding of singing in recorded music therefore presents the 
additional complex task of first identifying the voice amid multi-
ple sounds before extracting some desired high-level information. 

When creating the architecture for vocal analysis systems 
to operate on recorded music, any one of three basic approach-
es can be taken. First, a system could be designed to only 
consider parts of the music signal where the voice is naturally 
isolated (i.e., points at which all nonvocal signals are silent). 
This approach is conceptually straightforward, but has three 
major drawbacks. The system is limited by its ability to dis-
criminate a solo voice from all other conditions, and any errors 
will propagate through the system. There are no guarantees 
that isolated vocals will occur with sufficient frequency in a 
recording to perform some task. Even so, occasional views of 
the signal will be inadequate for applications that require com-
prehensive information regardless of interference (e.g., tran-
scription of melody or lyrics).

Another approach, described in a large body of work in source 
separation of music, attempts to isolate a sound source of inter-
est given a mix of other signals [9]. Source-separation algorithms 
generally fall into one of two categories: those that exploit domain 
knowledge of music in the application of signal decomposition 
algorithms (e.g., independent components analysis, nonnegative 
matrix factorization, robust principal components analysis) or 
those that use data-driven methods that act as filters to directly 
produce the voice signal in isolation. To the former, the singing 
voice is often sparse and nonrepetitive in a musical mixture, and 
algorithms can exploit these properties to perform singing-voice 
separation [10]. Accompaniment is often considered “low rank,” 
in that it consists of instruments (e.g., drums or guitars playing 
repetitive patterns), whereas the voice is monophonic and irregu-
lar. In a complementary fashion, audio decomposition techniques 
can be applied in a cascaded fashion to disassemble the music 
recording into a set of midlevel components that are fine enough 
to model various characteristics of the singing voice, while coarse 
enough to keep an explicit semantic meaning of the compo-
nents [11]. More recently, deep neural networks have emerged 
in singing-voice separation as powerful nonlinear filters. These 
algorithms are trained on existing pairs of aligned mixture and 
isolated voice signals, with the objective of minimizing the error 
between the true and estimated vocal signals. Modern deep-
learning approaches show particular promise, and various works 
continue to explore different architectures, objective functions, 
and data sources [12]. To chart progress in this area, the Signal 
Separation Evaluation Campaign is an annual community-led 
event organized to systematically and reproducibly compare 
source-separation algorithms [13].

The third, and most direct, approach is to develop models or 
features that can characterize the voice despite the presence of 
interfering signals. In practice, MFCCs or LPCs have proven to 
be reasonably useful as a consequence of standard practice in 
sound production; typically, though by no means always, lead 
vocals are the predominant signal in the mix, and thus vocal 
information also tends to dominate these representations. For 
some tasks, feature engineering has proven rather effective, 
but there are obvious limitations to this approach. More gener-

ally, given advances in machine learning, and particularly deep 
learning, generic time–frequency representations (e.g., MFCCs 
or spectrograms) or raw time-domain waveforms may be used 
as inputs to deep neural networks. Data-driven methods enable 
the system to tease apart signal attributes relevant to voice given 
an objective, but present their own challenges with respect to 
data collection, training, and computation. We will see how 
these three approaches are applied as a function of the task, 
model, and data.

Singing analysis applications
From the perspective of web-scale music listening, singing-
voice analysis aims to extract high-level information from au-
dio signals to enable systems to address some user need (e.g., 
find instrumental music or songs without expletives). This ap-
plication space is broad, given the range of sounds the human 
voice can produce, and so it is helpful to distinguish between 
the different categories of sound within this space. Musical-
ity and natural language can be represented as two partially 
overlapping subsets (Figure 2), whose union lies within a larger 
space of vocalization: for example, one can sing without ad-
hering to the rules of any natural language (e.g., humming or 
scat), communicate via speech amusically, or produce a vari-
ety of sounds that qualify as neither. The ability of humans 
to comprehend information in musical or linguistic contexts is 
achieved through high-level cognition built upon lower-level 
perceptual faculties.

Noting that significant time and attention has been paid to 
the computational analysis of speech [2], we focus our atten-
tion here on three types of singing, each with an eye toward the 
corresponding musical applications:

 ■ Vocalization: acoustic primitives of voice that are common 
to both musical and linguistic contexts, contributing to 
such tasks as vocal activity, technique classification, and 
vocalist identification

 ■ Vocal music: singing in musical contexts, which give rise 
to intonation, melody, and genre by establishing or rein-
forcing the elements of harmony, rhythm, and timbre

Vocalization

Singing Speech
Sung
Lyrics

S

M L

FIGURE 2. An illustration of the set relationship between musicality across 
the space of sound produced by the human voice (S) such that “singing” 
comprises vocalizations in a musical grammar (M), “speech” as vocaliza-
tions in a linguistic grammar (L), and “sung lyrics” as the intersection of 
the two, .M L+
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 ■ Sung lyrics: the intersection of musicality and language, 
with applications similar to those in speech recognition, 
such as language identification, audio–text alignment, and 
transcription.
Before proceeding, we offer a few notes for consideration. 

First, these domains are ordered by level of abstraction, which 
serves as an approximate guide of computational difficulty 
(e.g., vocal activity is simpler than melody estimation, and both 
are simpler than lyrics transcription; this is not to say, how-
ever, that any of these tasks are trivial, as all are open research 
areas). Related tasks typically employ similar approaches, and 
lower-level tasks or representations are often reused in higher-
level ones. Finally, the applications presented here are connect-
ed to salient dimensions reported by listeners when relevant, 
both to motivate and identify opportunities for future work.

Vocalization
As described previously, vocalization encompasses the super-
set of sounds produced by the human voice. Given that listen-
ers are particularly sensitive to the presence of voice gener-
ally, the first stage in singing analysis aims to characterize 
the acoustic primitives of voice. These systems focus on the 
human voice as a sound source and thus share the common 
properties that they are not inherently constrained to musical 
applications. As a result, these systems find additional appli-
cation in higher-level voice-analysis systems (e.g., only apply 
lyrics transcription when the voice is present to reduce errors).

Activity detection
The automatic detection of singing voice in recorded music 
finds immediate use in recommendation contexts (e.g., iden-
tifying “focus” music). Referred to as vocal activity detection 
(VAD), such systems typically predict the likelihood of vocal 
activity on short time-scales (i.e., 1 s to dozens of seconds) and 
can be applied convolutionally over longer signals to produce 
time-varying estimates; others aim to make predictions over 
a complete recording. Continuous-valued likelihoods may be 
simply thresholded at some bias point to produce binary de-
cisions between vocal or instrumental states. Alternatively, in 
time-varying estimates, postprocessing [e.g., hidden Markov 
models (HMMs) or median filtering] may be used to prevent 
spurious or brief detection intervals.

At a high level, two basic approaches may be taken to detect 
the presence of a singing voice from an observation. The tra-
ditional approach involves feature engineering in combination 
with such classifiers as random forests, support vector machines 
(SVMs), or neural networks. The current state of the art with 
this approach uses fluctogram and delta-MFCC features (i.e., 
first-order difference) that are fed to a long short-term memory 
recurrent neural network [8]. Alternative approaches use deep 
neural networks in an end-to-end fashion. The current state of 
the art with this approach produces results similar to those of 
its feature-engineered counterpart when trained without data 
augmentation [14]. With data augmentation, the results seem 
to be superior, but it is still not clear how previous approaches 
would also benefit from data augmentation.

One particular challenge faced in VAD systems is a height-
ened sensitivity to data-set composition and domain transfer for 
training and evaluation. Both prior discussed approaches  yield 
models that appear to distinguish even highly harmonic instru-
ments producing voice-like pitch trajectories from actual singing 
voices, as demonstrated by extremely low false-positive rates on 
specifically curated tests. However, it is especially important to 
make use of instrumental music to better assess performance [8]. 
Training with instrumental music helps decrease false-positive 
rates, while evaluating on instrumental music can reveal certain 
weaknesses in a given model. Algorithms insensitive to varia-
tions of the level of loudness may allow for meaningful compari-
son. Otherwise, a performance gap between two methods—one 
loudness-invariant, the other not—could possibly be caused by 
a convenient level of loudness for the loudness-sensitive method. 
To give an example, for a loudness-sensitive method the num-
ber of false positives will often decrease along with the level of 
loudness, contrary to the output of a loudness-invariant method, 
where the number of false positives stays constant.

Technique classification
Machine perception of vocal technique, a burgeoning area of 
research in singing-voice analysis, relates to a listener’s affin-
ity or aversion to a music recording. Phonation modes are im-
portant building blocks of more advanced vocal techniques and 
corresponding analysis systems, such as genre recognition or 
lyrics transcription. Technique modeling can be seen as a more 
granular form of general vocal-activity detection, where short-
time observations are classified into the kind of vocal activity 
present. To these ends, the Phonation Modes data set consists of 
sung vowels in one of the four main phonation modes: breathy, 
pressed, flow, and neutral [15]. By using a model of singing 
voice that simulates airflow and pressure through the vocal 
folds, the authors of the data set achieve an accuracy of 65% 
with a four-way classifier.

VocalSet is a singing voice data set that consists of these 
more advanced vocal techniques [16]. These vocal techniques 
include vibrato, straight, breathy, vocal fry, lip trill, trill, tril-
lo, inhaled singing, belting, and spoken. Some of these tech-
niques are found in a basic vocal repertoire, such as vibrato or 
trill, while others, like inhaled singing or vocal fry, are found 
in more advanced repertoires. Figure 3 shows spectrograms of 
each of these techniques for a male singer in the data set. The 
spectrograms of each technique are visually different, despite 
coming from the same singer with the same musical intention 
(e.g., singing scales, arpeggios, and long tones). VocalSet was 
collected by recruiting professional singers to sing examples 
of each of these techniques. The data set consists of 20 sing-
ers (11 female), each singing these ten techniques on scales, 
arpeggios, and long tones. VocalSet contains 10.1 h of record-
ings. Using deep convolutional neural networks, the authors of 
the data set achieved a precision of 0.676 and a recall of 0.619 
in a ten-way classification setup.

Notably, the role of phonation in performance varies across 
musical cultures. Computational and quantitative techniques 
have been used to study variations of singing technique in the 
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Beijing Opera as a result of educational influence [17]; found-
ed by different instructors, the students of different schools 
inherit the corresponding vocal production characteristics. 
Going beyond the subjective description of singing style (e.g., 
sweet, clear, fragile), the authors take into account a diverse 
set of audio features common in music-signal analysis, and 

experimental results support previous findings in the musicol-
ogy literature.

Singer identification
The automatic identification of vocalists in music audio can 
help address metadata errors and identify collaborations in 
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FIGURE 3. Mel spectrograms of the ten vocal techniques contained in the VocalSet data set: (a) vibrato, (b) straight, (c) breathy, (d) vocal fry, (e) lip trill, (f) 
trill, (g) trillo, (h) inhaled singing, (i) belting, and (j) speaking. Each is a performance of a specific vocal technique by the same male singer. Different vocal 
techniques produce characteristic spectrograms.
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recordings, two commonly recurring challenges. As yet anoth-
er degree of specificity beyond technique modeling, the prob-
lem of vocalist identification is one that stands to benefit greatly 
from data-driven methods. While efforts in singer identifica-
tion (singer-ID) have produced few results, one system of note 
proceeds by extracting vocal segments from songs, computing 
some engineered feature representation, and classifying with 
a machine-learning model of choice (e.g., SVMs or Gaussian 
mixture models) [18]. Singer-ID is distinct from the recognition 
of vocal technique alone in two ways: 1) longer time scales may 
be necessary to distinguish among different vocalists; and 2) it 
remains unclear what the preceptual or computational limits of 
singer-ID might be in terms of accuracy or performance. How-
ever, given that music collections typically provide artist labels 
on recordings, singer-ID presents an interesting opportunity 
due to the availability of data for supervised machine learning.

Vocal music
Building upon general vocalizations, we now focus on the anal-
ysis of the singing voice in musical contexts specifically. While 
singing may also convey natural language, “vocal music” is 
defined as the musical compositions or performances that fea-
ture one or more human voices. This entails an understanding 
that singing conforms to the basic dimensions of music: har-
mony (pitch), rhythm (timing), and timbre (source discrimina-
tion). However, while timbre encompasses the distinguishing 
traits of a particular sound source—here, the human voice—a 
singer is considered a monophonic instrument, i.e., of a single 
pitch. While the human voice is capable of producing multiple 
pitched sounds simultaneously, the practice is uncommon and 
not considered here. As a result of emphasis placed on harmo-
ny in traditional music theory practice, the analysis of singing 
often, though not exclusively, focuses on pitch.

Intonation
The harmonic basis on which a piece of music is built is known 
as intonation. In popular Western music, the common tuning 
system is known as 12-tone equal temperament and has stan-
dardized by convention on A4 = 440 Hz. While some popular 
instruments produce sound in quantized pitch intervals (e.g., 
piano), the human voice is capable of producing arbitrary pitch. 
Some non-Western music traditions, such as Indian art music 
(IAM), take other approaches to intonation that complicate 
the design of signal processing systems, making intonation 

a relevant research topic. For context, IAM refers to two art 
music traditions of the Indian subcontinent, Hindustani music 
(also known as North Indian music) and Carnatic music (also 
known as South Indian music). Both Hindustani and Carnatic 
music are singing-centric traditions, and therefore the voice 
effectively dictates the intonation used in a piece. Rāga is de-
fined as the melodic framework in IAM and serves as the core 
musical concept used in composition, performance, music or-
ganization, and pedagogy. Hindustani and Carnatic music is 
characterized by different melodic attributes, such as svaras 
(roughly speaking, notes), intonation of the svaras, and char-
acteristic melodic phrases.

Due to the importance and variation inherent to pitched sing-
ing, the lack of simplifying assumptions around tuning compli-
cates the automatic analysis of these kinds of music. Carnatic 
music, for example, does not make use of an equal-tempered 
tuning schema, being closer to five-limit just intonation, whereas 
Hindustani music can be explained by a mixture of equal-tem-
pered tuning and five-limit just intonation (a five-limit tuning 
system uses powers of two, three, and five to compute notes 
relative to a reference frequency). The intonation of svaras is an 
important characteristic of a rāga, and so detailed pitch distribu-
tions are informative as a result. It has been shown, for example, 
that the shape of the pitch histogram for different svaras can 
assist in automatic identification of rāgas [19]. Since there exists 
subtle intonation differences across rāgas, the frequency resolu-
tion chosen for intonation analysis in IAM is much higher than 
that for many other music traditions.

Melody estimation
The task of determining the pitch, or fundamental frequency, 
of the singing voice in music over time is generally referred 
to as vocal melody estimation. Estimated melodies are typi-
cally represented in the form of time series (time, pitch), where 
the interval between time steps is small (e.g., 10 ms), and pitch 
values are continuous (measured in hertz) values rather than 
as discrete note values. Figure 4 shows an example of a vocal 
melody estimated by an algorithm (green) plotted against the 
ground truth vocal melody (black) for a short excerpt. Note how 
by representing the pitch values on a continuous rather than dis-
crete frequency grid, information, such as vibrato, is captured 
between 50 and 51 s in the figure. Additionally, note that part of 
the task is also to determine where no vocal melody is present.

There are three common types of approaches to vocal melody 
estimation [20]: salience, source separation, and machine-learn-
ing based. Salience based methods leverage the assumption that 
vocals exhibit a known harmonic series. To exploit this informa-
tion, these approaches first estimate a vocal salience representa-
tion, a time–frequency representation derived from a short-time 
Fourier transform, realized by reweighting the amplitude of each 
time–frequency bin based on the presence or absence of related 
harmonics. The purpose of this is twofold: 1) to de-emphasize 
content that is not part of the vocal melody and 2) to emphasize 
content that is likely part of the vocal melody (i.e., content with 
many related harmonics). Salience representations are comput-
ed, for example, via harmonic summation, harmonic percussive 
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FIGURE 4. A vocal melody estimated by an algorithm (green) against the 
ground truth (human labeled) vocal melody (black).
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source separation, or filtering/equalization. After computing a 
salience representation, these methods often apply heuristics-
based rules for selecting the most likely vocal melodies from the 
computed representation. Source separation-based methods first 
isolate the singing voice and subsequently apply a pitch tracker 
in order to compute the melody, or conversely they jointly esti-
mate the singing-voice audio signal and the vocal melody. More 
recently, machine-learning methods have been used to turn the 
task into a classification problem by discretizing the frequency 
space with at least one class per semitone and predicting the most 
likely class over time [21], [22]. Alternatively, machine learning 
can be used to learn robust salience representations [23].

Vocal melody estimation has a number of applications in 
musical indexing and retrieval. A long-standing goal of MIR is 
known as query-by-humming, where a listener can search a col-
lection of content by vocalizing a given melody. The ability to 
find specific recordings by melody would likely result in related 
results and similarity-based retrieval. Additionally, melody is a 
predominant feature of music and would further inform higher-
level analysis, such as pattern discovery and structural segmen-
tation (e.g., thumbnailing or chorus detection).

Estimation of the predominant melody is also at the core of 
singing-voice analysis in IAM [24]. In a typical performance, the 
main vocalist is accompanied by another melodic instrument, 
almost like a lagging imitation of the lead. There are approaches 
that exploit this convention by tracking the two melodic con-
tours simultaneously, one of which being that of the lead vocal-
ist. Attempts have been made to automate the selection of pitch 
contour corresponding to the lead artist by using temporal insta-
bility of the voice harmonics. Due to the subtle nuances in the 
temporal evolution of the melodies (specifically in the transitory 
regions between two svaras), the entire pitch contour is often 
used as a midlevel feature for singing-voice analysis. Often, 
steady-state regions and transitory regions in a melody are seg-
mented for better characterization of the melodies.

Genre
Among the more abstract concepts in music, genre is used to 
describe the musical categories that emerge naturally from a 
culture’s influence on itself. A genre is established through the 
use or reuse of certain musical aspects, such as structural form, 
instrumentation, or melodic patterns, which leads to shared un -
derstanding across groups of people. Various forms of rock 
prominently feature distorted guitars, for example, while blues 
is known for dominant chords and 12-bar phrasing.

While there are numerous, often inscrutable characteris-
tics that may contribute to the boundaries of a genre, it is rel-
evant here to consider those that place a specific emphasis on 
the singing voice. One instance is that of subgenres of metal 
music, which are characterized by extreme vocal effects [25]. 
One of the primary motivations behind singing-voice analysis 
in IAM is for automatic rāga identification. Recently, a tech-
nique called time-delayed melody surfaces has been shown to 
capture continuous tonal and temporal characteristics of these 
melodies, resulting in a significant improvement in rāga recog-
nition accuracy [26]. Rap is another notable instance of a genre 

identified in large part by distinctive rhythmic voice delivery 
characteristics. It has been demonstrated that only 11 perception-
inspired features lead to 91% classification accuracy between 
rapping and singing with only 3-s isolated vocal segments [27]. 
The most salient feature was found to be the ratio of voiced 
frames to nonsilent frames, confirming the prominent role of 
rhythm and lack of melodic characteristics of rapping, in con-
trast with the more melodic nature of traditional singing found 
in contemporary rhythm and blues music.

Genre can also serve as a suitable proxy for singing style, 
a musically appealing but difficult to define characterization 
of vocal performance (e.g., theatrical, aggressive, or power-
ful). Vocal-specific features, such as statistics computed over 
fundamental frequency ( )f0  contours, are useful for discrimi-
nating between different singing styles in both supervised and 
unsupervised approaches [28]. Clustering these features has 
enabled the semantically meaningful organization of a collec-
tion of 50,000 excerpts of folk music from around the world, 
while large-scale embeddings for vocal style are also a promis-
ing avenue of research [29].

Sung lyrics
Viewed from the perspective of linguistics, human vocal com-
munication with language has four dimensions [30]:

 ■ Phonemes: the building blocks of vocalized language, rep-
resenting discrete units of sound

 ■ Prosody: the articulation of phonemes over time, including 
aspects of inflection, duration, rate, or intonation

 ■ Vocabulary: the combination of phonemes into words as 
higher-level sound objects

 ■ Grammar: the sequential, structural composition of words.
At the intersection of music and natural language, the sing-

ing of lyrics presents unique difficulties beyond those typically 
faced in speech processing alone [31]. Often the rules of gram-
mar are bent or ignored for artistic reasons (e.g., rhyme). Pro-
sodic elements are constrained by the melodic and rhythmic 
dimensions of a musical work and not necessarily by the lan-
guage in which the lyrics are performed. For example, the typi-
cal fundamental frequency for female speech lies between 165 
and 200 Hz, while in singing it can reach more than 1,000 Hz. 
This is further complicated in a tonal language like Chinese, 
where the inflection of pitch is also used to convey semantic 
meaning. As a result, traditional speech corpora are insufficient 
for building data-driven models for singing analysis, given the 
degree of domain transfer between spoken language and vocal 
music. Meanwhile, accompanying instrumentation complicates 
traditional assumptions regarding noise in speech processing, 
in that typically all signals in recorded music are both harmoni-
cally and temporally correlated. With that in mind, we now turn 
our attention to methods for language identification, the align-
ment of audio and lyrics, and lyrics transcription.

Language identification
Singing language identification (SLID) can be seen as a simpli-
fication of comprehensive lyrics transcription. In music services 
for global populations, the predominant language of performance 
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is a valuable attribute: It provides deeper insight into music 
catalogs in linguistically diverse settings, such as India or the 
Philippines; and, through greater comprehension of the con-
tent, enables a deeper understanding of a listener’s language 
preferences. The latter is a complex issue facing recommender 
systems because of asymmetrical preferences toward music 
consumed in different origins (e.g., users in country X might 
listen to music from country Y, but not the inverse).

SLID systems conventionally approach the task by model-
ing the statistics of phonemes over long time scales, build-
ing different templates on a per-language basis. One modern 
effort of note is that of [32], which focuses on 25 languages 
drawn from 25,000 music videos. The authors explore a vari-
ety of feature representations, leveraging both acoustic and 
visual descriptors aggregated over the temporal context of the 
signal, fed into a number of binary SVM classifiers (one per 
language). Experimental results show that a mix of acous-
tic features—spectrograms, MFCCs, and stabilized audi-
tory images—led to a performance on a test set of 44.7%; by 
adding visual features, the system achieved 47.8% accuracy. 
Interestingly, this system considers general-purpose feature 
representations, placing the burden of modeling on a power-
ful classifier, and calls into question the need to distinguish 
between vocal and nonvocal segments.

Audio–lyrics alignment
Time-alignment of lyrics with the corresponding audio is nec-
essary for such popular applications as karaoke and subtitling 
of music videos. The availability of alignments also makes 
possible a host of applications, such as automatic radio edits, 
playback starting/ending at specified lines, and analyses of how 
words in music correspond to beats, melodies, and other mu-
sical structures [33]. Manual alignments do not scale to large 
collections of audio, raising the need for accurate automated 
alignment algorithms.

The goal of automated alignment, shown in Figure 5, is to 
take the audio and lyrics and produce a time alignment of the 
two inputs. Alignments are typically at the word level, but may 
also be at the level of lines or phonemes, depending on the down-
stream application. Line-level alignments may be sufficient for 
such products as subtitling or some karaoke interfaces. LyricAl-
ly is one system of note that detects such structural elements as 
beats and rhythm, which are used to segment the audio into the 
introduction, verses, chorus, bridge, and coda [34]. The lines in 
the lyrics corresponding to these sections are then aligned to the 
segmented audio. Word-, syllable-, or phoneme-level alignments 
require greater precision. Some works rely on annotations, such 
as Musical Instrumental Digital Interface (MIDI) files or lead 
sheets; however, these cannot generalize to unannotated music.

The speech technology community uses a method called 
forced alignment to time-align audio and transcripts. Forced 
alignment involves finding the Viterbi path through HMMs 
that map phonemes to MFCCs or other features of the acous-
tics. These HMMs are trained from large corpora of transcribed 
speech. Several speech toolkits, such as CMU Sphinx (https://
cmusphinx.github.io), the Hidden Markov Model Toolkit (http://
htk.eng.cam.ac.uk), and Kaldi (http://kaldi-asr.org)  implement 
forced alignment, including the ability to train the acoustic HMM 
models, with wrappers, such as the Montreal Forced Aligner 
(http://montreal-forced-aligner.readthedocs.io), providing inter-
faces to these programs. Forced alignment works best when line 
or phrase-level boundaries are specified, since alignment qual-
ity degrades with audio longer than a minute. Forced alignment 
forms the basis of most lyrics–audio alignment algorithms. How-
ever, some characteristics of singing make it challenging to apply 
alignment models developed for speech to music [35].

Introduced earlier, lyrics alignment is one area that makes 
use of vocal detection and separation as preprocessing steps 
before alignment to mitigate challenges posed by record-
ed music. In addition, it is possible to reduce the sound of 
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FIGURE 5. Visualization of automated word- and phoneme-level alignments from a segment of a song generated with the Praat software  
(http://www.fon.hum.uva.nl/praat). 
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accompanying  instruments with f0  estimation and resynthesis 
and to adapt the acoustic HMM models trained on speech to a 
small corpus of music [36]. Systems may also use placeholders 
in the HMM for such words as “yeah yeah” that may not be cap-
tured in the reference lyrics. Integrating musical information, 
such as chord sequences, is also helpful for improving lyrics-
alignment performance [37].

Lyrics transcription
Lyrics transcription is generally performed in two steps: first, 
phoneme probabilities are recognized in the singing audio by us-
ing an acoustic model; then, the results are processed with a lan-
guage model to obtain plausible word sequences. As in speech 
recognition, most early lyrics-transcription systems relied on 
HMMs for acoustic modeling. Due to the lack of lyrically tran-
scribed singing data, many systems trained acoustic models on 
read speech, with language models built on actual texts of lyrics. 
For example, language modeling can be achieved with a finite-
state automaton fitted to the lyrics of a collection of Japanese 
children’s songs [38]. The system is tested on sung phrases con-
sisting of five words, without accompaniment, achieving a word 
error rate of 36%. By training speaker-specific acoustic models, 
the word error rate is lowered to 27%.

Several improvements have been proposed that incorpo-
rate intuition about human perception to lyrics. It is noted that 
source separation can be used as a preprocessing technique to 
improve model accuracy. Repetition and structure in music, 
such as the chorus, may also be exploited to improve transcrip-
tion accuracy [39]. Three different strategies are proposed for 
combining individual results: feature averaging, selection of the 
chorus instance with the highest likelihood, and combination 
using the Recognizer Output Voting Error Reduction (ROVER) 
algorithm. Twenty unaccompanied English-language songs 
from the Real World Computing (RWC) database were used 
for testing; chorus sections were selected manually. The best-
instance selection and the ROVER strategies improve results 
significantly; with the ROVER approach and a general-purpose 
language model, the phoneme error rate is 74% (versus 76% in 
the baseline experiment), while the word error rate is improved 
from 97% to 90%. Interestingly, cases with a low baseline result 
benefit the most from exploiting repetition information.

To overcome the lack of realistic training data, forced-align-
ment algorithms may be used to fit a set of unaccompanied sing-
ing with unaligned lyrics [40]. For example, deep neural networks 
are trained on MFCCs of music signals to produce singing-specif-
ic acoustic models. These models produce better results compared 
to those trained on speech, with the phoneme error rate falling to 
80%. Notably, both word and phoneme error rates are expected to 
be higher in lyrics transcription than in speech recognition. While 
the limits of human lyrics recognition are unknown, the phenom-
enon of “misheard” lyrics is common [41].

A simplified form of lyrics transcription is the ability to pin-
point specific words (e.g., expletives) in recordings. Many song 
lyrics contain expletives, and there are numerous scenarios in 
which it is necessary to know when these words occur (e.g., 
“family-friendly” listening sessions). In the case of airplay, exple-

tives are commonly “bleeped” or acoustically removed. The 
task of finding such words is based on the alignment strategies 
described previously, taking advantage of the wide availability 
of textual lyrics. The system proceeds by automatically align-
ing text lyrics to audio, searching for predefined expletives in 
the result, and subsequently modifying the signal where any 
flagged instances occur (e.g., adding white noise as an obfusca-
tion) [40]. The test data set consists of 80 popular songs, most 
of them hip-hop. Annotations indicated 711 instances with 48 
expletives on these songs, and the matching textual, unaligned 
lyrics were manually retrieved from the Internet. Using the 
acoustic models described therein, 92% of the expletives were 
detected in their correct positions with a tolerance of 1 s.

Next steps

Getting started with singing analysis
As illustrated by the breadth of the previous section, singing-
voice analysis is a diverse area of study with potential to enable 
a variety of large-scale applications. However, this rich array of 
possibilities may also make it difficult to decide where and how 
to first dive into this topic. To help direct new explorations in 
singing-voice analysis, there are three tasks we recommend as 
good entry points: vocal-activity detection, singer-ID, and SLID. 
Each can be framed as a straightforward classification problem 
with objective evaluation measures (i.e. precision, recall, f-score) 
and in each case the task of finding or collecting labeled data is 
relatively easy. To further facilitate this exploration, we also pro-
vide an open-source software tutorial for self-guided exploration 
(https://github.com/spotify/ieee-spm-vocals-tutorial).

Vocal-activity detection is a logical starting point for those new 
to music signal processing with an interest in singing analysis. 
Recognizing vocal activity as a low-level percept, computational 
systems can focus on short-time observations drawn from audio 
signals, simplifying both labeling and modeling as a binary clas-
sification task. Given the increasingly mature state of machine 
learning, the challenge of building a VAD system resides more 
in obtaining or curating data for training and evaluation. The two 
conventional data sets used in VAD research are the Jamendo 
collections, though newer collections like MedleyDB (http:// 
medleydb.weebly.com/), OpenMIC-2018 (https://github.com/
cosmir/openmic-2018), or AudioSet (http://research.google.com/
audioset/) provide more data for training such models. A particular 
advantage of VAD as a task is that its simple framing allows one 
to study the effects of data-set composition on model performance. 
As mentioned previously, the inclusion of a cappella (solo voice) or 
instrumental music in a data set can help address false negatives 
or false positives, respectively, but it is also possible to synthesize 
more training data from multitrack recordings (e.g., MedleyDB).

Another attractive, near-field opportunity suitable for new-
comers to the topic of singing-voice analysis is that of singer-ID. 
As discussed, methods for singer-ID are somewhat under-rep-
resented in the literature, leaving ample room to improve upon 
the state of the art. Additionally, there is often a 1:1 correspon-
dence between recording artist (or group) and vocalist (i.e., a 
band features a single singer in all of its recordings), and it is 
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possible to collect large data sets for training machine-learning 
models without too much effort. This observation can be com-
bined with modern source-separation algorithms to produce 
reasonable approximations of vocals in isolation, mitigating 
any confounding factors of instrumentation. This approach can 
be applied to the Free Music Archive (FMA) data set (https://
github.com/mdeff/fma), which contains 100,000 recordings 
from more than 16,000 unique artists, with more than 1,000 
artists having at least 20 recordings. Alternatively, Stanford’s 
Digital Archive of Mobile Performances collection (https://
ccrma.stanford.edu/damp/) features 35,000 solo voice record-
ings from roughly 350 amateur singers, which mostly bypasses 
the need for source-separation preprocessing. This data could 
be used to train a model as in the VAD scenario, with a clas-
sifier applied to short-time observations of audio signals. We 
emphasize that these artist–singer labels can be used to fit 
deep-learning models whose intermediary representations 
(e.g., the penultimate layer) can be used as an embedding 
model for similarity and retrieval.

A third accessible voice-analysis application is that for iden-
tifying the language of the song. While there is traditionally no 
mutually agreed upon data set for this problem, the FMA con-
tains non-English-language tags for several hundred record-
ings, and global music services no doubt contain playlists or 
artists that consist of music performed in a given language. 
Similar to the formulation of singer-ID, language identifica-
tion may benefit from the application of source separation as 
a preprocessing step, and there is considerable opportunity to 
advance the state of the art in the area of sung lyrics.

Challenges and opportunities
Singing-analysis research is rich with opportunities and chal-
lenges. We summarize a few. Subjective evaluation of singing-
voice models, as in source separation and similarity, remains 
a challenge [42]. Objective metrics of source-separation qual-
ity are widely used (e.g., signal–noise ratio) but their ability to 
mirror perception is limited. Expert or crowdsourcing listening 
tests are often used, but researchers have yet to adopt a standard 
and well-controlled protocol. Singing-style models have mostly 
been evaluated using listening tests, and these have been small 
in scale due to the significant human effort involved. Larger 
models that cover diverse music require more quantitative 
methods. There is not yet a standard for benchmarking models 
of vocal style, for defining vocal similarity or style, or for quan-
tifying listeners’ perception of the singing voice. While there is 
some work that investigates the relationship of phonation modes 
with vocal styles, it is unclear how it relates to perception of the 
voice and remains an open area of research.

Machine-learning-based approaches are becoming ubiqui-
tous to most aspects of computational analysis of vocals, but we 
have yet to see the kinds of dramatic improvements that have 
been achieved recently in related fields. On reflection, this is 
likely due to a lack of large, readily available collections for 
music signal processing research, like ImageNet for object rec-
ognition. Thus, while the newer data sets mentioned here, such 
as the FMA, may help address this shortcoming, more effort is 

needed to curate or mine large-scale data sets for other tasks in 
singing-voice research. For example, user-contributed lyrics are 
widely available on the Internet, and the ability to align these 
text documents with audio would transform the field.

Curating labeled music data sets for every task may prove 
cost prohibitive, given the skills required, as in the case of mel-
ody annotation. For these tasks, it may be more practical in the 
short term to artificially generate training data from symbolic 
signals, such as MIDI files and lead sheets, using realistic instru-
ment synthesizers. This is not yet feasible for all tasks involving 
vocals, since modern voice synthesizers have yet to fully repli-
cate natural singing. However, advances in melody estimation 
may provide realistic voice approximations, thereby producing 
more realistic data for training. Similarly, vocal source separa-
tion or an increase in the availability of multitrack recordings 
makes it possible to create mixes of arbitrary pairs of vocals 
and instrumentals. Importantly, unlabeled vocal music content 
is abundant. By mining large catalogs of music, we can build 
weakly labeled training sets or investigate multimodal approach-
es to data-set creation (e.g., music videos that feature lyrics).

Finally, most music informatics research is focused on ana-
lyzing commercially produced music content, which typically 
is created by professional musicians and follows basic tenets 
of music in accordance with the relevant genre or tradition. On 
the other hand, content produced by amateurs is not bound to 
follow these tenets and often poses a challenge to the existing 
singing information processing approaches. In recent years, the 
volume of such content and applications has risen significantly, 
often in the context of music education and gaming, (e.g., kara-
oke applications). The imprecision of amateur singing may be 
more pronounced than that for instrumental performances by 
amateurs since the frequencies produced by the voice are not 
naturally quantized, like they are, for example, for the flute, and 
have neither tangible nor visual feedback, as with a violin. Given 
that there are vastly more amateur than professional singers, the 
automatic analysis of the singing voice presents a considerable 
opportunity to enhance the human experience of music.
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